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Fractional Gaussian fields on Rn

The class of fractional Gaussian fields was recently put forward by
A. Lodhia, S. Sheffield, X. Sun, and S. S. Watson.

It is defined as
the distribution valued Gaussian field

X = (−∆)−sW , (1)

where s ≥ 0, W is a white noise and ∆ is the Laplace operator on
Rn. The expression (1) has of course to be understood in a
distributional sense and means that for every f in the Schwartz
space S(Rn) of smooth and rapidly decreasing functions one has∫

Rn

(−∆)s f (x)X (dx) =

∫
Rn

f (x)W (dx).
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Fractional Gaussian fields on Rn

This class of Gaussian fields includes the following popular
examples:

I s = 0 White noise;
I s = 1/2 Gaussian free field ;
I s = n

4 log-correlated Gaussian field;
I When n

4 < s < n
4 + 1

2 , the Gaussian random measure X admits
a density with respect to the Lebesgue measure which is the
fractional Brownian motion indexed by Rn. The Hurst
parameter H of this fractional Brownian motion is given by
H = 2s − n

2 .
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Regularity theory for fractional Gaussian fields

Pathwise properties of the fractional Gaussian fields on Rn are
studied using Fourier transform techniques where (−∆)−s is seen
as the multiplier ‖λ‖−2s on the Fourier space.

In this talk we will
show how to define the fractional Gaussian fields and develop their
regularity theory on singular spaces like fractals.
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As an illustrative example, in this talk we will focus on the
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Fractional Gaussian fields on the gasket

We aim to prove the following result:

Theorem (B.-Lacaux, 2021)

Let K be the Sierpiński gasket with normalized self-similar
Hausdorff measure µ and Laplacian ∆. Then, if W is a white noise
on K and dh

2dw < s < 1− dh
2dw , the Gaussian random measure

(−∆)−sW has a density w.r.t. µ which has a Hölder continuous
modification of exponent H− where H = sdw − dh

2 .

The explicit values dh = ln 3
ln 2 and dw = ln 5

ln 2 are known.
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Sierpiński gasket

In R2 ' C, consider the triangle with vertices q0 = 0, q1 = 1 and
q2 = e

iπ
3 . For i = 1, 2, 3, consider the map

Fi (z) =
1
2

(z − qi ) + qi .

Definition
The Sierpiński gasket is the unique non-empty compact set K ⊂ C
such that

K =
3⋃

i=1

Fi (K ).
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Laplacian on the Sierpiński gasket

Denote V0 = {q0, q1, q2}. For f ∈ C (K ), one can consider the
quadratic forms

En(f , f )

=
1
2

(
5
3

)n ∑
i1,··· ,in

∑
x ,y∈V0

(f (Fi1 ◦ · · · ◦ Fin(x))− f (Fi1 ◦ · · · ◦ Fin(y)))2

Define then

F =
{
f ∈ C (K ), lim

n→∞
En(f , f ) < +∞

}
and for f ∈ F ,

E(f , f ) = lim
n→∞

En(f , f ).
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Laplacian on the Sierpiński gasket

Theorem (Kigami)

(E ,F) is a local regular Dirichlet form on L2(K , µ) with the
following self-similar property

: For every f , g ∈ F

E(f , g) =
5
3

∑
i=1,2,3

E(f ◦ Fi , g ◦ Fi ).

The generator ∆ of this Dirichlet form is called the Laplacian of the
gasket.
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White noise on the Sierpiński gasket

We consider on the measurable space (K ,K, µ), where K is the
Borel σ-field on K , a real-valued Gaussian random measure
W : K → L2 (Ω,F ,P) with intensity µ. In other words, W is such
that

I a.s. W is a measure on (K ,K)

I for any A ∈ K such that µ(A) <∞, W (A) is a real-valued
Gaussian variable with mean zero and variance
E
(
W (A)2

)
= µ(A)

I for any sequence (An)n∈N ∈ KN of pairwise disjoint measurable
sets, the random variables W (An), n ∈ N, are independent.



Fractional Gaussian fields on the Sierpiński gasket

For a parameter s ≥ 0, we consider the Gaussian random measure
(−∆)−sW .

Lemma
If s > dh

2dw , the Gaussian random measure (−∆)−sW has a density
X given by

X (x) =

∫
K
Gs(x , z)W (dz), x ∈ K ,

where Gs is the integral kernel of the operator (−∆)−s .

The keypoint is that for s > dh
2dw , there exists an L2 kernel Gs(x , y)

such that

(−∆)−s f =

∫
K
Gs(·, y)f (y)dµ(y).
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Fractional Riesz kernels on the Sierpiński gasket

The fractional Riesz kernel Gs is given by the formula

Gs(x , y) =
1

Γ(s)

∫ +∞

0
ts−1(pt(x , y)− 1)dt.

where pt(x , y) is the heat kernel of ∆.

This heat kernel has been
studied by Barlow-Perkins (1988) and has sub-Gaussian estimates:

pt(x , y) ' c1t
−dh/dw exp

(
−c2

(d(x , y)dw

t

) 1
dw−1

)
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Hölder regularity of the FGFs

To study the existence of a Hölder continuous version for the
density X one can appeal to the entropy method (Adler-Taylor) for
Gaussian fields which is a technique available in Ahlfors regular
metric spaces.

This eventually boils down to proving:

Theorem
For s ∈

(
dh

2dw , 1−
dh

2dw

)
and f ∈ L2(K , µ)

|(−∆)−s f (x)− (−∆)−s f (y)| ≤ Cd(x , y)sdw−
dh
2 ‖f ‖L2(K ,µ).

Therefore, in the range s ∈
(

dh
2dw , 1−

dh
2dw

)
, the operator (−∆)−s

maps L2(K , µ) into the space of bounded and
(
sdw − dh

2

)
-Hölder

continuous functions.



Hölder regularity of the FGFs

To study the existence of a Hölder continuous version for the
density X one can appeal to the entropy method (Adler-Taylor) for
Gaussian fields which is a technique available in Ahlfors regular
metric spaces. This eventually boils down to proving:

Theorem
For s ∈

(
dh

2dw , 1−
dh

2dw

)
and f ∈ L2(K , µ)

|(−∆)−s f (x)− (−∆)−s f (y)| ≤ Cd(x , y)sdw−
dh
2 ‖f ‖L2(K ,µ).

Therefore, in the range s ∈
(

dh
2dw , 1−

dh
2dw

)
, the operator (−∆)−s

maps L2(K , µ) into the space of bounded and
(
sdw − dh

2

)
-Hölder

continuous functions.



Hölder regularity of the FGFs

To study the existence of a Hölder continuous version for the
density X one can appeal to the entropy method (Adler-Taylor) for
Gaussian fields which is a technique available in Ahlfors regular
metric spaces. This eventually boils down to proving:

Theorem
For s ∈

(
dh

2dw , 1−
dh

2dw

)
and f ∈ L2(K , µ)

|(−∆)−s f (x)− (−∆)−s f (y)| ≤ Cd(x , y)sdw−
dh
2 ‖f ‖L2(K ,µ).

Therefore, in the range s ∈
(

dh
2dw , 1−

dh
2dw

)
, the operator (−∆)−s

maps L2(K , µ) into the space of bounded and
(
sdw − dh

2

)
-Hölder

continuous functions.



Hölder regularity of the FGFs

The proof partially relies upon the theory of Besov spaces on
Dirichlet spaces that was recently developed by Alonso-Ruiz, B.,
Chen, Rogers, Shanmugalingam and Teplyaev.

In particular, from
that theory it is known that for the Sierpiński gasket there exists a
constant C > 0 such that for every g ∈ L∞(K , µ), t > 0 and
x , y ∈ K ,

|Ptg(x)− Ptg(y)| ≤ C
d(x , y)dw−dh

t1−
dh
dw

‖g‖L∞(K ,µ).
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Hölder regularity of the FGFs

Idea of the proof: One has∣∣(−∆)−s f (x)− (−∆)−s f (y)
∣∣

=C

∣∣∣∣∫ +∞

0
ts−1(Pt f (x)− Pt f (y))dt

∣∣∣∣
≤C

∫ +∞

0
ts−1 |Pt f (x)− Pt f (y)| dt

We then decompose the integral∫ +∞

0
=

∫ δ

0
+

∫ +∞

δ

with δ ' d(x , y)dw .
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Hölder regularity of the FGFs

The small time integral
∫ δ
0 is controlled using ultracontractivity of

the semigroup Pt and the large time integral
∫ +∞
δ is controlled

using interpolation theory and the Hölder regularization estimate
for Pt .



Hölder regularity of the FGFs

Coming back to the regularity problem for X , applying the entropy
method we obtain

Theorem
There exists a modification X ∗ of (−∆)−sW such that

lim
δ→0

sup
d(x ,y)
x,y∈K

≤δ

|X ∗(x)− X ∗(y)|
d(x , y)H

√
|ln d(x , y)|

<∞,

where H = sdw − dh
2



Maximal Hölder regularity of the FGFs

For the gasket, the optimal Hölder regularity exponent of the FGFs
is H = dw − dh.

For other fractals, the method we developed also
works in the range dh

2dw < s ≤ 1− dh
2dw , however the optimal Hölder

regularity exponent of the FGFs is unknown and conjectured to be

H = dw − dh + dtH − 1

where dtH is the topological Hausdorff dimension of the carpet.
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