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NC probability theory

This talk wants to arouse again interest for rough paths principles
applied to non-commutative probability theory.

We suppose given a unital C ∗ algebra (A, 1, ·, ∗, ‖ · ‖) and a trace
ϕ : A → C, ϕ(1) = 1 , ϕ(ab) = ϕ(ba) , ϕ(aa∗) ≥ 0.

Basic examples:

A = L∞(Ω,P) and ϕ = E (the only commutative example)

A = MN×N(L∞(Ω,P)) and ϕ(A) = 1
NE(TrA)

A is an infinite-dimensional VN Algebra

NC random variables X are self-adjoint elements of A
NC stochastic processes are self-adjoint paths X : [0, 1]→ A.
In this talk, we will focus only on the space A.
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NC stochastic calculus

During the last 30 years several theories of NC stochastic calculus
theories where introduced to define a NC stochastic integral∫ t

0
As · dXs · Bs

Some fundamental examples:

A is the Fock-space of a Hilbert space and X is the
annihilation operator (quantum stochastic calculus)
[Parthasarathy ’84]

A is a Boolean Fock space and X is the preservation operator
(boolean stochastic calculus) [Ghorbal-Schürmann ’02]

A is a VN Algebra and X is a free Brownian motion (free
stochastic calculus) [Biane-Speicher ’98]
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NC stochastic differential equations

A class of NC SDE to study with rough paths is

dYt = f (Yt) · dXt · g(Yt) , Y0 ∈ A

with f , g : A → A smooth in terms of functional calculus.

These equations might arise as limit in law for random
matrices models in large dimension

The standard theory to solve them studies equations with
additive noise, relying strongly on standard Itô theory, is still
lacking a strong solution theory

Is rough path theory capable of studying these equations? Before
that, does X lift to an explicit rough path?
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NC rough paths (standard theory)

The infinite-dimensional setting makes the theory more complicate
[Ledoux-Lyons-Qian ’02]. Due to the presence of a product in the
equations, it is mandatory to consider a projective tensor product.

In case of Free and q-Brownian Motion, using some sharp
BDG inequalities, there exist Levy areas in the spatial tensor
product [Capitaine, Donati-Martin ’01][Victoir ’04]

Using the abstract results from [Lyons-Victoir ’07] it is
possible to construct a geometric rough path which could not
coincide with general Wong-Zakai approximation schemes

In the case γ ∈ (1/3, 1/2) similar problems were recently
studied in [Grong-Nilssen-Schmeding ’20] using
sub-Riemannian geometry in infinite dimension
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The Deya-Schott’s approach

In [Deya-Schott ’13] the authors introduced a new object to study
the solution of

dYt = f (Yt) · dXt · g(Yt) Y0 ∈ A

We fix A,B ∈ A and we consider the linearised equation

dYt = (A · Yt) · dXt · (Yt · B) Y0 = 1

Writing down the Picard iterations

Yt = 1 + A · δ0tX · B +

∫
∆2

0t

A2 · dXt1 · B · dXt2 · B

+

∫
∆2

0t

A · dXt2 · A · dXt1 · B2 + (· · · )
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The Deya-Schott’s approach

If we arrest the expansion at level 2 and we look at two instants
s < t it is possible to rewrite the expansion using the formal object

(s, t)→

[
(A,B)→

∫
∆2

st

A · dXt1 · B · dXt2

]
∈ L(A⊗A,A)

This object is at the basis of the product Lévy area above X
[Deya-Schott ’13]. The precise definition requires the projective
tensor product and some measurability conditions in the inputs.

The product Levy area is weaker than the Lévy area and it can be
constructed explicitly from dyadic partitions.

What type of algebraic structure lies behind the higher order
integrations? This might give new insights also on signatures.
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Higher order expansion

What are the next terms in the expansion?

Yt = 1 + A(δ0tX )B +

∫
∆2

0t

A2dXt1BdXt2B +

∫
∆2

0t

AdXt2AdXt1B
2

+

∫
∆3

0t

A3dXt1BdXt2BdXt3B +

∫
∆3

0t

A2dXt2AdXt1B
2dXt3B

+

∫
∆3

0t

AdXt3A
2dXt1BdXt2B

2 +

∫
∆3

0t

AdXt3AdXt2AdXt1B
3

+

∫
∆3

0t

A2dXt2BdXt3AdXt1B
2 +

∫
∆3

0t

A2dXt1BdXt3AdXt2B
2 + · · ·

The solution is described using permutations and contractions of
the third order integral

∫
∆3

0t
dXt1 ⊗ dXt2 ⊗ dXt3 .
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Full contractions

Definition

Let X : [0, 1]→ A be a smooth path and σ ∈ Sn. We define the
full contraction along σ as Xσ : [0, 1]2 → L(A⊗(n+1),A)

Xσst(A0, . . . ,An) =

∫
∆n

st

A0dXtσ(1)A1 · · ·An−1dXtσ(n)An

Instead of elements living in T (A) =
⊕∞

n=1A⊗n, the full
contractions live in the endomorphism space

End(A) =
∞⊕
n=1

L
(
C[Sn], L(A⊗(n+1),A)

)
Moreover there exists a linear map Op: T (A)→ End(A)
transforming signatures in full contractions.
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Chen relation

Is it possible to write down a Chen relation on full contractions?

X3
st = X

(132)
st (A0,A1,A2,A3) =

∫
∆3

st

A0dXt1A1dXt3A2dXt2A3

X3
st − X3

su − X3
ut =

∫
(t1,t2)∈∆2

su

∫
t3∈∆1

ut

A0dXt1A1dXt3A2dXt2A3

+

∫
t1∈∆1

su

∫
(t2,t3)∈∆2

ut

A0dXt1A1dXt3A2dXt2A3

In the non-commutative case we cannot express this term using
products of full contractions at lower order.
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The need of partial contractions

By enlarging the family of full contractions and studying a different
operation, we can write down a new identity.

Let X
(1)
st ∈ L(A2,A) and Yst ∈ L(A4,A2) be the maps

X
(1)
st (A0,A1) = A0(δstX )A1

Yst(B0,B1,B2,B3) =

∫
∆2

st

B0dXt1B1⊗B2dXt2B3

They involve integrations over lower orders and we have∫
(t1,t2)∈∆2

su

∫
t3∈∆1

ut

A0dXt1A1dXt3A2dXt2A3 = X
(1)
ut ◦ Ysu

◦ : L(A⊗n,A⊗k)× L(A⊗k ,A⊗m)→ L(A⊗n,A⊗m) is the operadic
operation of composition for operators. Yst is a partial contraction.
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Levelled trees and forests

Definition

A levelled tree/forest is a planar binary rooted tree/forest endowed
with an decoration on the interior nodes which preserves the
intrinsic partial order union the root tree and the empty forest.

We denote by Tn the set of levelled trees with n leaves and Fn
m the

set of levelled forests with n leaves and m trees. These objects
describe efficiently full and partial contractions.
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Permutations and trees

Theorem (Loday-Ronco ’98)

The set Tn+1 is in bijection with Sn.

We write σ = (σ(1) · · ·σ(n)) to obtain a decoration

We encode full contractions using a meaningful structure.
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Partial contractions and forests

Definition

Let X : [0, 1]→ A be a smooth path and f ∈ Fn+1
m such that

f = f1 · · · fm where fk ∈ Snk . We define the partial contraction
along f as Xf : [0, 1]2 → L(A⊗(n+1),A⊗m)

Xf
st(B0, . . . ,Bn) =

∫
∆n+1−m

st

dX f1
tf1

(B0, · · · )⊗ · · · ⊗ dX fm
tfm

(· · · ,Bnm)

dX fk
tfk

(C0, · · · ,Cnk ) = C0dXtfk (1)C1 · · · dXtfk (nk )Ck

Partial contractions live in the bigraded structure

Mult(A) =
∞⊕
n=1

n+1⊕
m=1

L
(
C[Fn+1

m ], L(A⊗(n+1),A⊗m)
)

and there exists an explicit linear map m-Op: T (A)→ Mult(A).
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Operations on forests

Every levelled tree can be cut all along its vertical generations

Looking at levelled forests f , we add extra nodes and edges to
keep the number of generations G (f ) constant.
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Operations on forests

By cutting each forest f along its i-th generation we obtain two
subforests f +

i f −i and a coproduct operation

∆f =

G(f )∑
i=0

f −i ⊗ f +
i

The proper spaces to describe ∆ are forest C[F ] and couples of
forests with some compatibility conditions on the vertical
generations C[F ] 	 C[F ]. 	 is called vertical tensor product.

Theorem (B. Gilliers ’21)

There exists a product µ : C[F ] 	 C[F ]→ C[F ] such that
(C[F ], µ,∆) is a Hopf algebra structure with respect to 	 .
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Example

X3
st = X3

su + X3
ut +

∫
(t1,t2)∈∆2

su

∫
t3∈∆1

ut

· · ·+
∫
t1∈∆1

su

∫
(t2,t3)∈∆2

ut

· · ·
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The NC Signature

Theorem (B., Gilliers ’21)

Let X : [0, 1]→ A be a smooth path with signature
X : [0, 1]2 → T (A). Defining X = m-Op(X), we have a function
X : [0, 1]2 → Mult(A) satisfying the following properties:

For any levelled f ∈ F and s, u, t ∈ [0, 1]

Xf
st = (Xut ◦ Xsu)∆f (NC Chen relations)

For any levelled forest f , h such that Xf
st ◦ Xh

st is well-defined

Xst(µ(f , h)) = Xf
st ◦ Xh

st (NC shuffle relations)

We call X the NC signature of X .
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Remarks and perspectives

Similarly to standard signatures, there exists a Lie group G
such that X : [0, 1]2 → G are group increments.

The value of X is uniquely determined by full-contractions and
an extra class of operations called faces-contractions

Using this definition it is possible to design a notion of NC
rough paths and NC controlled rough paths. How do these
definitions behave when there is a trace ϕ
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Thanks
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