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Start with the ring R, with operations

x + y x · y .

For h > 0 define

x ⊕h y := h log(e
x
h + e

y
h )

x �h y := h log(e
x
h · e

y
h ) = x + y .

For h→ 0 this converges to (Maslov dequantization)

x ⊕ y := max{x , y}
x � y := x + y .

This does not have additive inverses anymore!

It is hence a semiring , the max-plus semiring.
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A semiring (i.e. a ring without demand for additive inverse) pops
up in many places.
Dynamic programming
Consider a time-homogeneous Markov chain X0,X1,X2, . . . on
states {a, b, c}.

A costly way to obtain the terminal distribution is

P[Xn = a] =
∑

w∈{a,b,c}n+1,wn=a
πw0pw0w1 . . . pwn−1n  O(3n) E
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Dynamic programming
There is, of course, a more economic way:

P[Xn = a] = P[Xn−1 = a] · paa + P[Xn−1 = b] · pca

+ P[Xn−1 = c] · pba.

Iterating, one gets an O(n) algorithm.

What if we are interested in the most probable path instead?
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What if we are interested in the most probable path instead?

We just put the log-probabilities

and calculate in the max-plus semiring:

max
w∈{a,b,c}n+1,wn=a

(
log πw0 + log pw0w1 + log pw1w2 + · · · · log pwn−1wn

)
.

Dynamic programming still works!
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Convolutional Neural Networks

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0




∗

1 0 1
0 1 0
1 0 1


 =

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0





Why they work so well (probably ...)
1 Weight sharing.
2 Structure compatible with image data (“receptive field”,

approximate translation invariance).
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CNNs can, of course, be applied to sequential data.

0 1 1 1 0 3 0
( )

∗ 1 0 1
( )

= 1 2 1 4 0
( )

I K I ∗ K

Does it make sense?
1 Weight sharing. X
2 Structure compatible with time-series data ?
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Using a CNN to answer:
“Did a person visit Rome directly before visiting London?”

Hamburg Berlin Rome London Amsterdam

∗

Rome London
( )

=

0 0 1 0 0
( )
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But what if the person visits Rome some time before visiting
London?

Hamburg Rome Berlin Amsterdam London

A (one-layer) CNN has difficulties detecting this (unless the kernel
is large enough).
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Chronological question:
“Did a person visit Rome some time before visiting London?”

Hamburg Rome Berlin Amsterdam London

∗

Rome London
( )

=

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
( )
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More formal
Let

K : Cities× Cities→ {true, false}

(cityA, cityB) 7→
(

cityA =
)
∧
(

cityB =
)

pool : {true, false}(
nin
2 ) → {true, false}
z 7→ z1 ∨ z2 ∨ . . . ∨ z(nin

2 ).

Then

pool
(

K (xI) : I ∈
(

[nin]
2

))
=

∨
0<i1<i2≤nin

(
xi1 =

)
∧
(

xi2 =
)
,

is true if and only if Rome was visited some time before London.
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(There is nothing “learnable” here yet, we’ll come to this later.)

First, we want to deal with a problem:
(nin

2
)

gets large real quick !

To clarify, let us do 3 cities whose ordered visit we want to detect:

K (. . . ) := (cityA = ) ∧ (cityB = ) ∧ (cityC = )

pool
(

K (xI) : I ∈
(

[nin]
3

))
:=

∨
I∈([nin]

3 )
K (xI).

This needs O(n3
in) evaluations of K . E
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But! There is a better way.

∨
I∈([nin]

3 )
K (xI) =

∨
i1<i2<i3

(xi1 = ) ∧ (xi2 = ) ∧ (xi3 = )

=
∨
i3

 ∨
i1<i2<i3

(xi1 = ) ∧ (xi2 = )

 ∧ (xi3 = )

=:
∨
i3

pool′i3 ∧ (xi3 = ).

Only nin evaluations!
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Further

pool′i3 =
∨

i1<i2<i3
(xi1 = ) ∧ (xi2 = )

=
∨

i2<i3

 ∨
i1<i2

(xi1 = )

 ∧ (xi2 = )

=:
∨

i2<i3
pool′′i2 ∧ (xi2 = ).

Only nin evaluations (to calculate all of pool′•)!
Finally,

pool′′i2 =
∨

i1<i2
(xi1 = )

Only nin evaluations (to calculate all of pool′′•)!

total amount of evaluations: O(3nin) = O(nin)
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What have we achieved?

We calulated

pool
(

K (xI) : I ∈
(

[nin]
3

))
=

∨
I∈([nin]

3 )
K (xI)

=
∨

i1<i2<i3
(xi1 = ) ∧ (xi2 = ) ∧ (xi3 = ),

which, on paper, costs O(n3
in), in only O(nin) time !

What did we use?
∧ distributes over ∨
∧ and ∨ are associative

And that’s it.
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Definition
The tuple (S,⊕S,�S, 0S, 1S) is a commutative semiring if

(S,⊕S, 0S) is a commutative monoid with unit 0S

(S,�S, 1S) is a commutative monoid with unit 1S

0S �S S = {0S}
multiplication distributes over addition, i.e.

a �S (b ⊕S c) = (a �S b)⊕S (a �S c)

Examples of semirings
any commutative ring
boolean semiring
({false, true},∨,∧, false, true)
min-plus (“tropical”) semiring
(R ∪ {+∞},min,+,+∞, 0)
possibilistic (or Viterbi or Bayesian) semiring
([0, 1],max, ·, 0, 1)
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Examples of semirings (S,⊕S,�S, 0S, 1S)
semiring of subsets of a set M
(2M ,∪,∩, ∅,M)
any distributive lattice (with minimal and maximal element)
...

They are of huge interest in computer science / automata theory.

Corollary (DEFT ’20)
Let (S,⊕S,�S, 0S, 1S) be a commutative semiring. Then

pool
(

zI : I ∈
(

[nin]
k

))
:=

⊕
S

i1<···<ik≤nin

z�Sα1
i1 �S · · · �S z�Sαk

ik ,

is calculable in O(nin)-time.
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Examples
Over the ring R ∑

i1<···<ik
zα1

i1 . . . zαk
ik ,

 iterated-sums signature (quasisymmetric functions)
This has a long history.

Graham ’13 “Sparse arrays of signatures for . . . ”.
Lyons, Ni, Oberhauser ’14 “A feature set for streams . . . ”
various works by L Jin et al ’15 on Chinese character
recognition.
Kiraly, Oberhauser ’16 “Kernels for sequentially ordered data”.
Lyons, Oberhauser ’17 “Sketching the order of events”.
D ’13, D,Reizenstein ’19 on invariant features.
D,Ebrahimi-Fard,Tapia ’19 “Time warping invariants”.
Kidger, Bonnier, Arribas, Salvi, Lyons ’19 “Deep Signature
Transforms”.
Toth, Bonnier, Oberhauser ’20 “Seq2Tens”.
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In these works it progressively emerged that it is helpful to learn
the signature-type features.

Paraphrasing

 
∑

i1<···<ik
fθ1(zi1) · · · · · fθk (zik ).

with fθ : Rd → R.

We propose to boil this down to the bare minimum needed, namely

distributivity and associativity,

to arrive at a richer set of features.

 
⊕

S
i1<···<ik

fθ1(zi1)�S · · · �S fθk (zik ),

with fθ : Rd → S.
https://diehlj.github.io Iterated sums over semiring 21

https://diehlj.github.io


In these works it progressively emerged that it is helpful to learn
the signature-type features.

Paraphrasing

 
∑

i1<···<ik
fθ1(zi1) · · · · · fθk (zik ).

with fθ : Rd → R.

We propose to boil this down to the bare minimum needed, namely

distributivity and associativity,

to arrive at a richer set of features.

 
⊕

S
i1<···<ik

fθ1(zi1)�S · · · �S fθk (zik ),

with fθ : Rd → S.
https://diehlj.github.io Iterated sums over semiring 21

https://diehlj.github.io


Examples
Over the tropical semiring

min
i1<···<ik

{α1 · zi1 + · · ·+ αk · zik}

 tropical-sums signature
(tropical quasisymmetric expressions [DEFT ’20])

Leaving the strict setting of tropical-sums, we can do a learnable
version of the visiting-cities example:

Fix some embedding zi of the visited cities in Rd (e.g.
one-hot-encoding).
Introduce parametrized functions fθ : Rd → R ∪ {−∞},

 max
i1<i2

{
fθ1 (zi1) + fθ2 (zi2)

}
,

and learn θ1, θ2.
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Non-example

Not all type of sums work. For general nonlinear σ the sum∑
i1<···<ik

σ(xi1 + ..+ xik ),

cannot be efficiently computed, since one can frame NP-complete
problems in this form:

Subset sum problem: Given x1, . . . , xn ∈ Z is there a subset
which sums to 0?
Sub-problem: Is there a k-subset that sums to 0?∑

i1<···<ik
1{0}(xi1 + · · ·+ xik ).

If this would only cost O(k · n) we would get an
O(n + 2n + · · ·+ nn) = O(n2) algorithm. E
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Summary
Expressions of the from

pool
(

K (xI) : I ⊂
(

nin
k

))

extract meaningful, chronological information of time series.
In this generality they are computationally untractable.
Semirings provide a large class of examples that are tractable,
namely ⊕

S
i1<···<ik

fθ1(xi1)�S · · · �S fθk (xik ).
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Algebraic setting

For z1, z2, · · · ∈ S, s < t, we define a collection of values in S,
indexed by words in the alphabet N,〈

ISSS
s,t(z),w

〉
:=

⊕
S

s<i1<···<ik<t+1
z�Sw1

i1 �S · · · �S z�Swk
ik .

For example〈
ISSS

s,t(z), 537
〉

=
⊕

S
s<i1<···<i3<t+1

z�S5
i1 �S z�S3

i2 �S z�S7
i3

which in min-plus equals

min
s<i1<i2<i3<t+1

{5 · zi1 + 3 · zi2 + 7 · zi3}.
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Recall: z1, z2, · · · ∈ S;
〈

ISSS
s,t (z), 537

〉
:=
⊕

s<i1<i2<i3<t+1
z�S5
i1
�S z�S3

i2
�S z�S7

i3
.

ISSS
s,t(z) is an element of S〈〈N〉〉, the space of formal, infinite

sums of words (in the alphabet N) with coefficients in S:

ISSS
s,t(z) =

∑
w

cw w ,

with

cw :=
⊕

S
s<i1<···<ik<t+1

z�Sw1
i1 �S · · · �S z�Swk

ik .
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Recall: z1, z2, · · · ∈ S;
〈

ISSS
s,t (z), 537

〉
:=
⊕

s<i1<i2<i3<t+1
z�S5
i1
�S z�S3

i2
�S z�S7

i3
.

Theorem (DEFT ’20)
1 (Quasi-shuffle identity)〈

ISSS
s,t(z),w

〉
�S

〈
ISSS

s,t(z), u
〉

=
〈

ISSS
s,t(z),w ? u

〉
2 (Chen’s identity) For s < t < u,〈

ISSS
s,u(z),w

〉
=

⊕
S

w ′·w ′′=w

〈
ISSS

s,t(z),w ′
〉
�S

〈
ISSS

t,u(z),w ′′
〉

3 ISSS
0,∞(z) is invariant to inserting 0S into z.
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Quasisymmetric functions

Using formal variables Z1,Z2, . . . , the expressions⊕
s<i1<···<ik<t+1

Z�Sw1
i1 �S · · · �S Z�Swk

ik

are quasisymmetric expressions.

This is the monomial basis .

Over a ring there are many bases (monomial, fundamental, ..).
This does not work over a semiring (there is no additive inverse).

In the monomial basis, the product is given by the quasi-shuffle.
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Summary
In the special case of monomial f , we are led to the
iterated-sums signature over a semiring〈

ISSS
s,t(z),w

〉
=

⊕
S

s<i1<···<ik<t+1
z�Sw1

i1 �S · · · �S z�Swk
ik .

This is the evaluation of quasisymmetric function expressions
on the time series. Almost all properties of the classical
setting survive (they mostly depend on the structure of the
index set ..).
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Log signature
There is no log signature, since there is no minus.

More concretely, over the tropical semiring(〈
ISSS(z), 1

〉)�S2 =
〈

ISSS(z), 11
〉
⊕S

〈
ISSS(z), 2

〉
.

But, knowing both(〈
ISSS(z), 1

〉)�S2 = 2 min
i

zi〈
ISSS(z), 2

〉
= 2 ·min

i
zi ,

we can clearly not deduce the value of〈
ISSS(z), 11

〉
= min

i1<i2
{zi1 + zi2}.

Q: How to extract the “minimal” information con-
tained in the signature?
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Multidimensional time series
Multidimensional time series can be treated as usual, by
projecting the time series to coordinates before calculating the
iterated-sums.
In the semiring setting a more interesting approach seems possible,
by considering a time series as taking values in a larger semiring.

One example is via the map

Rd → bounded convex polytopes
x 7→ {x}.

The resulting time series can then be considered in the semiring of
polytopes (compare Borinsky - 2020 - Tropical Monte Carlo quadrature for Feynman integrals).

Q: In what semirings to embed a time series?
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Controlled systems

The iterated-integrals signature has close relation to controlled
ODEs, and iterated-sums over a ring appear in discretized dynamic
systems.
There is a vast literature on discrete control over semirings.

Q: Is there a relation of the ISSS to discrete control
theory in a semiring?
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Dynamic programming
We can embed the iterated-sums in such a framework:
Let z1, .., zn be a time series in a semiring S. Consider

where all horizontal edges have weight 1S.

W (m) := the sum of weight of all paths from 0 to m.

Then

W (c2) = z1 �S z2

W (c3) = z1 �S z2 �S 1S ⊕s z1 �S 1S �S z3 ⊕S 1S �S z2 �S z3

= z1 �S z2 ⊕s z1 �S z3 ⊕S z2 �S z3

W (cn) =
〈

ISSS(z), 11
〉
.
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Dynamic programming

Q: Is there a deeper connection to dynamic program-
ming?
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Research assistant (3 years) with N. Sugiura (JAMSTEC), Japan.

“We are looking for an applied mathematician who is willing to
research real-world applications, or a geophysicist who is willing
to incorporate new mathematical theories. She/he is expected to
enhance geophysical research through novel data-driven
approaches. Specifically, she/he will be responsible for the data
analysis, as well as relevant theories, of geophysical data that
appear as vertical profiles and time series, by assembling and
coding machine learning algorithms with the use of the path
signature.”

Please go to https://diehlj.github.io for the link.

Deadline: March, 22th.
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Thank you!
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