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Let d ≥ 1, and let (Xt)t≥0 be a stochastic process with values in Rd .

A family of occupation densities for (Xt)t≥0 is defined (here) as a process
(Lat )a∈Rd ,t≥0 such that, almost-surely, we have the occupation times
formula ∫ t

0
f (Xs) ds =

∫
Rd

f (a) Lat da,

valid for all f : Rd → R+ Borel measurable.

We shall sometimes write Lat (X ) to emphasize the dependence on the
underlying process X .

Formally, Lat (X ) =
∫ t
0 δa(Xs) ds, where δa is the Dirac mass at a.

We say that the family of occupation densities (Lat )a∈Rd ,t≥0 is jointly
continuous if, almost-surely, (a, t) 7→ Lat is continuous.

There exist various approaches to the construction of occupation densities,
that apply in different contexts. Standard constructions apply when X is:

a real-valued semi-martingale,

a Markov process,

a Gaussian process with an appropriate covariance.
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Why are we interested in occupation densities?

For many reasons...e.g:

they appear in some very interesting SDEs and SPDEs.

they describe scaling limits of additive functionals of the underlying
process.

In this talk we will address the second application.
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Theorem (Darling-Kac Theorem)

Let (Bt) be a standard Brownian motion in R, and (Lat (B))a∈R,t≥0 the
associated family of occupation densities. Let f ∈ L1(R) and t ≥ 0 fixed.

Then, as λ→∞, 1√
λ

∫ λt
0 f (Bs) ds converges in distribution to

(
∫
R f ) L0t (B).

Proof: Performing the change of variable s = λu, and by the scaling
property of Brownian motion, we have

1√
λ

∫ λt

0
f (Bs) ds =

√
λ

∫ t

0
f (Bλu) du

(d)
=
√
λ

∫ t

0
f (
√
λBu) du.

By the occupation times formula, and performing the change of variable
b =
√
λa, the latter equals

√
λ

∫ +∞

−∞
f (
√
λa) Lat (B)da =

∫ +∞

−∞
f (b) L

b/
√
λ

t (B) db.

As λ→ +∞, by dominated convergence, the latter integral converges to(∫ +∞
−∞ f (b) db

)
L0t (B), whence the claim.
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Let now (BH
t )t≥0 be a d-dimensional fractional Brownian motion (fBM) of

Hurst parameter H ∈ (0, 1). That is, BH
t = (BH,1

t , . . . ,BH,d
t ) is a centered

Gaussian process with covariance matrix

E[BH,i
s BH,j

t ] = δi ,j
|t|2H + |s|2H − |t − s|2H

2
, 1 ≤ i , j ≤ d .

(BH
t )t≥0 is scale-invariant:

∀λ > 0, (BH
λt)t≥0

(d)
= (λHBH

t )t≥0.

Assume Hd < 1. Then one can prove (c.f. Geman-Horowitz, 1980) that
(BH

t )t≥0 admits jointly continuous occupation densities (Lat (BH))a∈Rd ,t≥0.

One can further prove limit theorems for additive functionals of (BH
t )t≥0.
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Theorem (c.f. Hu-Nualart-Xu, 2014)

Assume that Hd < 1. Let (BH
t ) be a d-dimensional fBM of Hurst

parameter H, and let (Lat (BH))a∈Rd ,t≥0 be the associated family of

occupation densities. Let f ∈ L1(Rd) and t ≥ 0 fixed. Then, as λ→∞,

λHd−1
∫ λt
0 f (BH

s ) ds converges in distribution to (
∫
Rd f ) L0t (BH).

Proof: Performing the change of variable s = λu, and by the scaling
property of the fBM, we have

λHd−1
∫ λt

0
f (BH

s ) ds = λHd
∫ t

0
f (BH

λu) du
(d)
= λHd

∫ t

0
f (λHBH

u ) du.

By the occupation times formula, and performing the change of variable
b = λHa, the latter equals

λHd

∫
Rd

f (λHa) Lat (BH)da =

∫
Rd

f (b) L
b/λH

t (BH) db.

As λ→ +∞, by dominated convergence, the latter integral converges to(∫
Rd f (b) db

)
L0t (BH), whence the claim.
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The above results possess numerous refinements in various directions, e.g.:

Kallianpur-Robbins (1953), Darling-Kac (1957): additive functionals
for Markov processes with stationnary transition densities (covering,
e.g., 2-dimensional Brownian motion).

Yamada (1986): fluctuation results in the case of a Brownian motion.

Fitzsimmons-Getoor (1992): fluctuation results in the case of stable
processes.

Hu-Nualart-Xu (2014): fluctuation results in the case of fBM

Most of the above results rely heavily on two ingredients:

1 existence of a jointly continuous family of occupation densities

2 scale invariance of the underlying process

What can we say for a non-Markovian process that is not scale-invariant?
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A non-scale-invariant process

We consider the process Xt := Bt + αBH
t , where α ∈ R \ {0} and:

B is a d-dimensional BM,

BH is a d-dimensional fBM independent of B.

X is called a mixed fractional Brownian motion. It is not a
semi-martingale for H ∈

(
0, 12
)
∪
(
1
2 ,

3
4

]
(Cheridito, 2001). Moreover, it is

not scale-invariant for H 6= 1/2.

Question: Can one prove limit theorems for additive functionals of such a
process?

8 / 22



A non-scale-invariant process

We consider the process Xt := Bt + αBH
t , where α ∈ R \ {0} and:

B is a d-dimensional BM,

BH is a d-dimensional fBM independent of B.

X is called a mixed fractional Brownian motion. It is not a
semi-martingale for H ∈

(
0, 12
)
∪
(
1
2 ,

3
4

]
(Cheridito, 2001). Moreover, it is

not scale-invariant for H 6= 1/2.

Question: Can one prove limit theorems for additive functionals of such a
process?

8 / 22



A non-scale-invariant process

We consider the process Xt := Bt + αBH
t , where α ∈ R \ {0} and:

B is a d-dimensional BM,

BH is a d-dimensional fBM independent of B.

X is called a mixed fractional Brownian motion. It is not a
semi-martingale for H ∈

(
0, 12
)
∪
(
1
2 ,

3
4

]
(Cheridito, 2001). Moreover, it is

not scale-invariant for H 6= 1/2.

Question: Can one prove limit theorems for additive functionals of such a
process?

8 / 22



Let Xt := Bt + αBH
t be a mixed fBM.

Theorem (E, Lê, 2021+)

X admits a jointly continuous family (Lat )a∈Rd ,t≥0 of occupation densities

whenever (H ∧ 1
2)d < 1. Moreover, for all f ∈ L1(Rd) and any fixed t ≥ 0,

the following limits hold:

1 when H < 1
2 and d = 1: λ−

1
2

∫ λt
0 f (Xr )dr converges as λ→∞ in

distribution to
∫
R f (y)dy L0t (B),

2 when H > 1
2 and d = 1: λH−1

∫ λt
0 f (Xr )dr converges as λ→∞ in

distribution to
∫
R f (y)dy L0t (BH),

3 when H < 1
2 and Hd < 1: λHd−1

∫ λt
0 f (Xr )dr converges as λ→∞ in

probability to 0.

In the sequel we shall sketch the proof of existence of the occupation
densities when (H ∧ 1

2)d < 1 and of the first limit.
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Let (Ω,F ,Ft ,P) be a filtered probability space, m ≥ 2 and T > 0 fixed.
We write Lm for Lm(Ω,F ,P) and, for all s ≥ 0, we write Es for E[ · |Fs ].

For 0 ≤ s ≤ t ≤ T , we assume given As,t ∈ Lm. For 0 ≤ s ≤ u ≤ t ≤ T ,
we further set

δAs,u,t := As,t − As,u − Au,t .
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Theorem (Stochastic Sewing Lemma, K. Lê)

Assume that there exist Γ1, Γ2 ≥ 0 and ε1, ε2 > 0, such that

‖Es [δAs,u,t ]‖Lm ≤ Γ1 |t − s|1+ε1 (1)

and
‖δAs,u,t − Es [δAs,u,t ]‖Lm ≤ Γ2 |t − s|

1
2
+ε2 . (2)

Then there exist a constant C = C (m, ε1, ε2) and an adapted process
(At)0≤t≤T in Lm such that A0 = 0 and satisfying

‖At −As − As,t‖Lm ≤ CΓ1 |t − s|1+ε1 + CΓ2 |t − s|
1
2
+ε2

and
‖Es [At −As − As,t ]‖Lm ≤ CΓ1 |t − s|1+ε1 .

Such a process A is unique up to modification.
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Remark: If there exist ε > 0 and α ∈ [0, 1) such that

‖As,t‖Lm ≤ Γ|t − s|
1
2
+ε, and Es [δAs,u,t ] = 0, then the assumptions of the

SSL are fulfilled, and we have

‖At −As − As,t‖Lm . Γ|t − s|
1
2
+ε,

whence, by the triangle inequality

‖At −As‖Lm . Γ|t − s|
1
2
+ε.

Corollary (Stability with respect to the germ)

If As,t and Ãs,t are two germs such that ‖As,t − Ãs,t‖Lm ≤ Γ|t − s|
1
2
+ε,

and satisfying Es [δAs,u,t ] = Es [δÃs,u,t ] = 0, then for all t ≥ 0,

‖At − Ãt‖Lm . Γ t
1
2
+ε.

Proof: apply the above Remark to A− Ã.
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To construct occupation densities, we will appeal to a singular version of
the SSL due to Khoa.

Assume that, for some α1 ∈ [0, 1) and α2 ∈ [0, 1/2), we have

‖Es [δAs,u,t ]‖Lm ≤ Γ1 u
−α1 |t − s|1+ε1 (3)

and
‖δAs,u,t − Es [δAs,u,t ]‖Lm ≤ Γ2 u

−α2 |t − s|
1
2
+ε2 . (4)

Then the conclusions of the SSL holds, but the estimates are replaced with

‖At −As − As,t‖Lm ≤ CΓ1

(∫ t

s
u−α1 du

)
|t − s|ε1

+ CΓ2

(∫ t

s
u−2α2 du

)1/2

|t − s|ε2 ,

and

‖Es [At −As − As,t ]‖Lm ≤ CΓ1

(∫ t

s
u−α1 du

)
|t − s|ε1 .
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In the sequel we sketch the proof of two statements:

Proposition (Existence of occupation densities)

Let d ≥ 1 and H ∈ (0, 1) such that
(
H ∧ 1

2

)
d < 1, and let α ∈ R \ {0}.

Then Xt := Bt + αBH
t admits a family of occupation densities

(Lat )a∈Rd ,t≥0. Moreover, for all a ∈ Rd , Lat is in Lm for all m ≥ 2 such that

(H ∧ 1
2)d < m

2(m−1) .

Example: When d = 1 and H < 1
2 , occupation densities exist in L∞.

Remark: Above we assumed α 6= 0. In the case α = 0, we would have
X = B: then occupation densities exist only when d = 1, and are in Lm

for all m <∞.

Proposition (Scaling limit for d = 1,H < 1/2)

Assume that H < 1
2 and d = 1. Then, for all f ∈ L1(R) and t ≥ 0 fixed,

λ−
1
2

∫ λt
0 f (Xr )dr converges as λ→∞ in distribution to

∫
R f (y)dy L0t (B).
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Note that the above statements only concern the law of (Xt)t≥0, so we
may choose how we construct this process.

Let (Bt)t≥0 and (Wt)t≥0 be two independent standard Brownian motions
in Rd defined on a probability space (Ω,F ,P), and let (Ft)t≥0 be the
filtration defined by

Ft = σ({(Bs ,Ws), s ≤ t}).

We construct the fBM (BH
t )t≥0 using the Mandelbrot-van Ness

representation:

BH
t = cH

∫ t

−∞

[
(t − r)

H−1/2
+ − (−r)

H−1/2
+

]
dWr ,

with cH an appropriate constant.
Finally we set Xt = Bt + αBH

t . Note that (Xt)t≥0 is adapted w.r.t.
(Ft)t≥0.
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Proof idea for the existence statement Let a ∈ Rd . We would like to
construct Lat using the SSL. Formally, Lat =

∫ t
0 δa(Xs) ds. What would be a

good germ?

Let g : Rd → R be a bounded, Borel measurable function. Trivially, a
germ generating At :=

∫ t
0 g(Xs) ds is As,t =

∫ t
s g(Xu) du.

But let us consider instead Ãs,t :=
∫ t
s Es(g(Xr )) dr . Then Ãs,t satisfies the

assumptions of the SSL. Indeed, δÃs,u,t =
∫ t
u (Es [g(Xr )]− Eu[g(Xr )]) dr ,

hence Es [δÃs,u,t ] = 0, and

‖δÃs,u,t‖Lm ≤
∫ t

u
‖Es [g(Xr )]− Eu[g(Xr )]‖Lm dr ≤ 2‖g‖∞|t − s|.

Moreover, the germ Ãs,t also generates the process At . Indeed
Es [At −As − Ãs,t ] = 0 and

‖At −As − Ãs,t‖Lm =

∥∥∥∥∫ t

s
(g(Xr )− Es [g(Xr )]) dr

∥∥∥∥
Lm
≤ 2‖g‖∞|t − s|.
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∫ t
u (Es [g(Xr )]− Eu[g(Xr )]) dr ,
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Moreover, the germ Ãs,t also generates the process At . Indeed
Es [At −As − Ãs,t ] = 0 and
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‖δÃs,u,t‖Lm ≤
∫ t

u
‖Es [g(Xr )]− Eu[g(Xr )]‖Lm dr ≤ 2‖g‖∞|t − s|.
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Back to the construction of
∫ t
0 δa(Xs) ds: the above motivates to consider

the germ As,t :=
∫ t
s Es(δa(Xu)) du.

Fact: For all s ≤ t, we can write Xt = Es(Xt)
⊥⊥
+ Zs,t , with

Es(Xt) ∼ N (0, κ(s, t)Id), where κ(s, t) & s2(H∧
1
2),

Zs,t ∼ N (0, ρ(s, t)Id), where

ρ(s, t) = |t − s|+ α2cH |t − s|2H & |t − s|2(H∧
1
2).

Therefore, with pt(x) := 1
(2πt)d/2

exp
(
−‖x‖

2

2t

)
the heat kernel in Rd , we

have

Es(δa(Xu)) = Es(δa(Es(Xu) + Zs,u)) = pρ(s,u)(a− Es(Xu)).

Note that
(
pρ(s,u)(a− Es(Xu))

)
0≤s<t

is a martingale.

Let As,t :=
∫ t
s pρ(s,u)(a− Es(Xu)) du. We check that As,t satisfies the

assumptions of the SSL.
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Let As,t =
∫ t
s pρ(s,u)(a− Es(Xu)) du. Then

δAs,u,t =

∫ t

u

(
pρ(s,r)(a− Es(Xr ))− pρ(u,r)(a− Eu(Xr ))

)
dr .

In particular Es [δAs,u,t ] = 0. To bound ‖δAs,u,t‖Lm , it suffices to bound
‖pρ(v ,r)(a− Ev (Xr ))‖Lm for any v < r . We use the following:

Lemma

Let κ, ρ > 0, X ∼ N (0, κ Id), and a ∈ Rd . Then, for all m ≥ 2,

‖pρ(a− X )‖Lm ≤ C (d)κ−
d
2m ρ−

d
2 (1− 1

m ),

where C (d) > 0 depends only on d .

Proof: Assume for simplicity m <∞. Then

E[pρ(a− X )m] =

∫
Rd

dx pκ(x) pρ(a− x)m ≤ ‖pκ‖L∞(Rd )︸ ︷︷ ︸
≤ C(d)κ−

d
2

‖pmρ ‖L1(Rd )︸ ︷︷ ︸
≤ C(d)ρ−

d
2
(m−1)

,

whence the claim.
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s pρ(s,u)(a− Es(Xu)) du. Then

δAs,u,t =

∫ t

u

(
pρ(s,r)(a− Es(Xr ))− pρ(u,r)(a− Eu(Xr ))

)
dr .

In particular Es [δAs,u,t ] = 0. To bound ‖δAs,u,t‖Lm , it suffices to bound
‖pρ(v ,r)(a− Ev (Xr ))‖Lm for any v < r . We use the following:

Lemma

Let κ, ρ > 0, X ∼ N (0, κ Id), and a ∈ Rd . Then, for all m ≥ 2,

‖pρ(a− X )‖Lm ≤ C (d)κ−
d
2m ρ−

d
2 (1− 1

m ),

where C (d) > 0 depends only on d .
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E[pρ(a− X )m] =

∫
Rd

dx pκ(x) pρ(a− x)m ≤ ‖pκ‖L∞(Rd )︸ ︷︷ ︸
≤ C(d)κ−

d
2

‖pmρ ‖L1(Rd )︸ ︷︷ ︸
≤ C(d)ρ−

d
2
(m−1)

,

whence the claim.
18 / 22



By the previous lemma, for all v < r , we obtain

‖pρ(v ,r)(a− Ev (Xr ))‖Lm . κ(v , r)−
d
2m ρ(v , r)−

d
2 (1− 1

m ),

Recalling that κ(v , r) & v2(H∧
1
2) and ρ(v , r) & |r − v |2(H∧

1
2), we get

‖pρ(v ,r)(a− Ev (Xr ))‖Lm . v−
d
m (H∧ 1

2) |r − v |−d(H∧ 1
2)(1− 1

m ),

so that

‖δAs,u,t‖Lm =

∥∥∥∥∫ t

u

(
pρ(s,r)(a− Es(Xr ))− pρ(u,r)(a− Eu(Xr ))

)
dr

∥∥∥∥
Lm

. s−α1 |t − s|
1
2
+ε1 ,

where α1 := d
m

(
H ∧ 1

2

)
and ε1 := 1

2 − d
(
H ∧ 1

2

) (
1− 1

m

)
. Since we

assumed d
(
H ∧ 1

2

)
< m

2(m−1) , we have α1 ∈ [0, 12) and ε1 > 0. So the SSL
applies, and we set Lat := At ∈ Lm. There remains to check the OTF: we
omit the details here.
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Proof of the scaling limit, case d = 1,H < 1/2.

Let Xt = Bt + αBH
t . Let f ∈ L1(Rd), and t ≥ 0. Want to show

1√
λ

∫ λt

0
f (Xs) ds

(d)−→
λ→∞

(∫
Rd

f (x) dx

)
L0t (B).

Performing the change of variable s = λu, and by the scaling property of
BM and fBM, we have

1√
λ

∫ λt

0
f (Xs) ds =

√
λ

∫ t

0
f (Xλu) du

(d)
=
√
λ

∫ t

0
f
(√

λ
(
Bu + αλH−

1
2BH

u

))
du.

By the occupation times formula, and performing the change of variable
b =
√
λa, we may rewrite this as

√
λ

∫ +∞

−∞
f (
√
λa) Lat

(
B + αλH−

1
2

)
da =

∫ +∞

−∞
f (b) L

b/
√
λ

t

(
B + αλH−

1
2

)
db.
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We now use the following result, which can be proven via the SSL:

Lemma

Let m ∈ [1,∞). There exists η > 0 such that∥∥∥Lb/√λt

(
B + αλH−

1
2

)
− L0t (B)

∥∥∥
Lm

. λ−η

uniformly in λ ≥ 1, locally uniformly in b ∈ R. Moreover,∥∥∥Lb/√λt

(
B + αλH−

1
2

)∥∥∥
Lm

is bounded uniformly in λ ≥ 1 and b ∈ R.

Thanks to these estimates, one easily concludes that, for any m ∈ [1,∞),∫
R
f (b) L

b/
√
λ

t

(
B + αλH−

1
2

)
db −→

λ→∞

(∫
R
f (b) db

)
L0t (B)

in Lm. Hence the convergence also holds in distribution. This concludes
the proof.
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There remain many interesting open questions:

Fluctuations? (what scaling if
∫
f (x) dx = 0?)

Correct scaling when d ≥ 2, H < 1
2 and dH < 1?

Scaling limits for additive functionals of more complicated processes
(e.g. solutions to SPDEs)?
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