Scaling limit results for additive functionals of mixed fractional Brownian motions

Henri Elad Altman, Imperial College London, In joint work with Khoa Lê (TU Berlin)

8th March, 2021, CIRM

Let $d \geq 1$, and let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with values in \mathbb{R}^{d}.

Let $d \geq 1$, and let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with values in \mathbb{R}^{d}. A family of occupation densities for $\left(X_{t}\right)_{t \geq 0}$ is defined (here) as a process $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ such that, almost-surely, we have the occupation times formula

$$
\int_{0}^{t} f\left(X_{s}\right) d s=\int_{\mathbb{R}^{d}} f(a) L_{t}^{a} d a
$$

valid for all $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$Borel measurable.

Let $d \geq 1$, and let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with values in \mathbb{R}^{d}. A family of occupation densities for $\left(X_{t}\right)_{t \geq 0}$ is defined (here) as a process $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ such that, almost-surely, we have the occupation times formula

$$
\int_{0}^{t} f\left(X_{s}\right) d s=\int_{\mathbb{R}^{d}} f(a) L_{t}^{a} d a
$$

valid for all $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$Borel measurable.
We shall sometimes write $L_{t}^{a}(X)$ to emphasize the dependence on the underlying process X.

Let $d \geq 1$, and let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with values in \mathbb{R}^{d}. A family of occupation densities for $\left(X_{t}\right)_{t \geq 0}$ is defined (here) as a process $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ such that, almost-surely, we have the occupation times formula

$$
\int_{0}^{t} f\left(X_{s}\right) d s=\int_{\mathbb{R}^{d}} f(a) L_{t}^{a} d a
$$

valid for all $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$Borel measurable.
We shall sometimes write $L_{t}^{a}(X)$ to emphasize the dependence on the underlying process X.
Formally, $L_{t}^{a}(X)=\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$, where δ_{a} is the Dirac mass at a.

Let $d \geq 1$, and let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with values in \mathbb{R}^{d}. A family of occupation densities for $\left(X_{t}\right)_{t \geq 0}$ is defined (here) as a process $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ such that, almost-surely, we have the occupation times formula

$$
\int_{0}^{t} f\left(X_{s}\right) d s=\int_{\mathbb{R}^{d}} f(a) L_{t}^{a} d a
$$

valid for all $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$Borel measurable.
We shall sometimes write $L_{t}^{a}(X)$ to emphasize the dependence on the underlying process X.
Formally, $L_{t}^{a}(X)=\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$, where δ_{a} is the Dirac mass at a. We say that the family of occupation densities $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ is jointly continuous if, almost-surely, $(a, t) \mapsto L_{t}^{a}$ is continuous.

Let $d \geq 1$, and let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with values in \mathbb{R}^{d}. A family of occupation densities for $\left(X_{t}\right)_{t \geq 0}$ is defined (here) as a process $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ such that, almost-surely, we have the occupation times formula

$$
\int_{0}^{t} f\left(X_{s}\right) d s=\int_{\mathbb{R}^{d}} f(a) L_{t}^{a} d a
$$

valid for all $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$Borel measurable.
We shall sometimes write $L_{t}^{a}(X)$ to emphasize the dependence on the underlying process X.
Formally, $L_{t}^{a}(X)=\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$, where δ_{a} is the Dirac mass at a.
We say that the family of occupation densities $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ is jointly continuous if, almost-surely, $(a, t) \mapsto L_{t}^{a}$ is continuous.
There exist various approaches to the construction of occupation densities, that apply in different contexts. Standard constructions apply when X is:

- a real-valued semi-martingale,
- a Markov process,
- a Gaussian process with an appropriate covariance.

Why are we interested in occupation densities?

Why are we interested in occupation densities?
For many reasons...e.g:

- they appear in some very interesting SDEs and SPDEs.
- they describe scaling limits of additive functionals of the underlying process.

Why are we interested in occupation densities?
For many reasons...e.g:

- they appear in some very interesting SDEs and SPDEs.
- they describe scaling limits of additive functionals of the underlying process.

In this talk we will address the second application.

Theorem (Darling-Kac Theorem)

Let $\left(B_{t}\right)$ be a standard Brownian motion in \mathbb{R}, and $\left(L_{t}^{a}(B)\right)_{a \in \mathbb{R}, t \geq 0}$ the associated family of occupation densities. Let $f \in L^{1}(\mathbb{R})$ and $t \geq 0$ fixed. Then, as $\lambda \rightarrow \infty, \frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda t} f\left(B_{s}\right) d s$ converges in distribution to $\left(\int_{\mathbb{R}} f\right) L_{t}^{0}(B)$.

Proof: Performing the change of variable $s=\lambda u$, and by the scaling property of Brownian motion, we have

$$
\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda t} f\left(B_{s}\right) d s=\sqrt{\lambda} \int_{0}^{t} f\left(B_{\lambda u}\right) d u \stackrel{(d)}{=} \sqrt{\lambda} \int_{0}^{t} f\left(\sqrt{\lambda} B_{u}\right) d u
$$

By the occupation times formula, and performing the change of variable $b=\sqrt{\lambda} a$, the latter equals

$$
\sqrt{\lambda} \int_{-\infty}^{+\infty} f(\sqrt{\lambda} a) L_{t}^{a}(B) d a=\int_{-\infty}^{+\infty} f(b) L_{t}^{b / \sqrt{\lambda}}(B) d b .
$$

As $\lambda \rightarrow+\infty$, by dominated convergence, the latter integral converges to $\left(\int_{-\infty}^{+\infty} f(b) d b\right) L_{t}^{0}(B)$, whence the claim.

Let now $\left(B_{t}^{H}\right)_{t \geq 0}$ be a d-dimensional fractional Brownian motion (fBM) of Hurst parameter $H \in(0,1)$. That is, $B_{t}^{H}=\left(B_{t}^{H, 1}, \ldots, B_{t}^{H, d}\right)$ is a centered Gaussian process with covariance matrix

$$
\mathbb{E}\left[B_{s}^{H, i} B_{t}^{H, j}\right]=\delta_{i, j} \frac{|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}}{2}, \quad 1 \leq i, j \leq d .
$$

Let now $\left(B_{t}^{H}\right)_{t \geq 0}$ be a d-dimensional fractional Brownian motion (fBM) of Hurst parameter $H \in(0,1)$. That is, $B_{t}^{H}=\left(B_{t}^{H, 1}, \ldots, B_{t}^{H, d}\right)$ is a centered Gaussian process with covariance matrix

$$
\mathbb{E}\left[B_{s}^{H, i} B_{t}^{H, j}\right]=\delta_{i, j} \frac{|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}}{2}, \quad 1 \leq i, j \leq d
$$

$\left(B_{t}^{H}\right)_{t \geq 0}$ is scale-invariant:

$$
\forall \lambda>0, \quad\left(B_{\lambda t}^{H}\right)_{t \geq 0} \stackrel{(d)}{=}\left(\lambda^{H} B_{t}^{H}\right)_{t \geq 0} .
$$

Let now $\left(B_{t}^{H}\right)_{t \geq 0}$ be a d-dimensional fractional Brownian motion (fBM) of Hurst parameter $H \in(0,1)$. That is, $B_{t}^{H}=\left(B_{t}^{H, 1}, \ldots, B_{t}^{H, d}\right)$ is a centered Gaussian process with covariance matrix

$$
\mathbb{E}\left[B_{s}^{H, i} B_{t}^{H, j}\right]=\delta_{i, j} \frac{|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}}{2}, \quad 1 \leq i, j \leq d
$$

$\left(B_{t}^{H}\right)_{t \geq 0}$ is scale-invariant:

$$
\forall \lambda>0, \quad\left(B_{\lambda t}^{H}\right)_{t \geq 0} \stackrel{(d)}{=}\left(\lambda^{H} B_{t}^{H}\right)_{t \geq 0} .
$$

Assume $H d<1$. Then one can prove (c.f. Geman-Horowitz, 1980) that $\left(B_{t}^{H}\right)_{t \geq 0}$ admits jointly continuous occupation densities $\left(L_{t}^{a}\left(B^{H}\right)\right)_{a \in \mathbb{R}^{d}, t \geq 0}$.

Let now $\left(B_{t}^{H}\right)_{t \geq 0}$ be a d-dimensional fractional Brownian motion (fBM) of Hurst parameter $H \in(0,1)$. That is, $B_{t}^{H}=\left(B_{t}^{H, 1}, \ldots, B_{t}^{H, d}\right)$ is a centered Gaussian process with covariance matrix

$$
\mathbb{E}\left[B_{s}^{H, i} B_{t}^{H, j}\right]=\delta_{i, j} \frac{|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}}{2}, \quad 1 \leq i, j \leq d
$$

$\left(B_{t}^{H}\right)_{t \geq 0}$ is scale-invariant:

$$
\forall \lambda>0, \quad\left(B_{\lambda t}^{H}\right)_{t \geq 0} \stackrel{(d)}{=}\left(\lambda^{H} B_{t}^{H}\right)_{t \geq 0} .
$$

Assume $H d<1$. Then one can prove (c.f. Geman-Horowitz, 1980) that $\left(B_{t}^{H}\right)_{t \geq 0}$ admits jointly continuous occupation densities $\left(L_{t}^{a}\left(B^{H}\right)\right)_{a \in \mathbb{R}^{d}, t \geq 0}$. One can further prove limit theorems for additive functionals of $\left(B_{t}^{H}\right)_{t \geq 0}$.

Theorem (c.f. Hu-Nualart-Xu, 2014)
Assume that $H d<1$. Let $\left(B_{t}^{H}\right)$ be a d-dimensional fBM of Hurst parameter H, and let $\left(L_{t}^{a}\left(B^{H}\right)\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ be the associated family of occupation densities. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $t \geq 0$ fixed. Then, as $\lambda \rightarrow \infty$, $\lambda^{H d-1} \int_{0}^{\lambda t} f\left(B_{s}^{H}\right) d s$ converges in distribution to $\left(\int_{\mathbb{R}^{d}} f\right) L_{t}^{0}\left(B^{H}\right)$.

Proof: Performing the change of variable $s=\lambda u$, and by the scaling property of the fBM, we have

$$
\lambda^{H d-1} \int_{0}^{\lambda t} f\left(B_{s}^{H}\right) d s=\lambda^{H d} \int_{0}^{t} f\left(B_{\lambda u}^{H}\right) d u \stackrel{(d)}{=} \lambda^{H d} \int_{0}^{t} f\left(\lambda^{H} B_{u}^{H}\right) d u .
$$

By the occupation times formula, and performing the change of variable $b=\lambda^{H} a$, the latter equals

$$
\lambda^{H d} \int_{\mathbb{R}^{d}} f\left(\lambda^{H} a\right) L_{t}^{a}\left(B^{H}\right) d a=\int_{\mathbb{R}^{d}} f(b) L_{t}^{b / \lambda^{H}}\left(B^{H}\right) d b
$$

As $\lambda \rightarrow+\infty$, by dominated convergence, the latter integral converges to $\left(\int_{\mathbb{R}^{d}} f(b) d b\right) L_{t}^{0}\left(B^{H}\right)$, whence the claim.

The above results possess numerous refinements in various directions, e.g.:

The above results possess numerous refinements in various directions, e.g.:

- Kallianpur-Robbins (1953), Darling-Kac (1957): additive functionals for Markov processes with stationnary transition densities (covering, e.g., 2-dimensional Brownian motion).

The above results possess numerous refinements in various directions, e.g.:

- Kallianpur-Robbins (1953), Darling-Kac (1957): additive functionals for Markov processes with stationnary transition densities (covering, e.g., 2-dimensional Brownian motion).
- Yamada (1986): fluctuation results in the case of a Brownian motion.

The above results possess numerous refinements in various directions, e.g.:

- Kallianpur-Robbins (1953), Darling-Kac (1957): additive functionals for Markov processes with stationnary transition densities (covering, e.g., 2-dimensional Brownian motion).
- Yamada (1986): fluctuation results in the case of a Brownian motion.
- Fitzsimmons-Getoor (1992): fluctuation results in the case of stable processes.

The above results possess numerous refinements in various directions, e.g.:

- Kallianpur-Robbins (1953), Darling-Kac (1957): additive functionals for Markov processes with stationnary transition densities (covering, e.g., 2-dimensional Brownian motion).
- Yamada (1986): fluctuation results in the case of a Brownian motion.
- Fitzsimmons-Getoor (1992): fluctuation results in the case of stable processes.
- Hu-Nualart-Xu (2014): fluctuation results in the case of fBM

The above results possess numerous refinements in various directions, e.g.:

- Kallianpur-Robbins (1953), Darling-Kac (1957): additive functionals for Markov processes with stationnary transition densities (covering, e.g., 2-dimensional Brownian motion).
- Yamada (1986): fluctuation results in the case of a Brownian motion.
- Fitzsimmons-Getoor (1992): fluctuation results in the case of stable processes.
- Hu-Nualart-Xu (2014): fluctuation results in the case of fBM

Most of the above results rely heavily on two ingredients:
(1) existence of a jointly continuous family of occupation densities
(2) scale invariance of the underlying process

The above results possess numerous refinements in various directions, e.g.:

- Kallianpur-Robbins (1953), Darling-Kac (1957): additive functionals for Markov processes with stationnary transition densities (covering, e.g., 2-dimensional Brownian motion).
- Yamada (1986): fluctuation results in the case of a Brownian motion.
- Fitzsimmons-Getoor (1992): fluctuation results in the case of stable processes.
- Hu-Nualart-Xu (2014): fluctuation results in the case of fBM

Most of the above results rely heavily on two ingredients:
(1) existence of a jointly continuous family of occupation densities
(2) scale invariance of the underlying process

What can we say for a non-Markovian process that is not scale-invariant?

A non-scale-invariant process

We consider the process $X_{t}:=B_{t}+\alpha B_{t}^{H}$, where $\alpha \in \mathbb{R} \backslash\{0\}$ and:

- B is a d-dimensional $B M$,
- B^{H} is a d-dimensional $f B M$ independent of B.

A non-scale-invariant process

We consider the process $X_{t}:=B_{t}+\alpha B_{t}^{H}$, where $\alpha \in \mathbb{R} \backslash\{0\}$ and:

- B is a d-dimensional BM ,
- B^{H} is a d-dimensional $f B M$ independent of B.
X is called a mixed fractional Brownian motion. It is not a semi-martingale for $H \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{3}{4}\right]$ (Cheridito, 2001). Moreover, it is not scale-invariant for $H \neq 1 / 2$.

A non-scale-invariant process

We consider the process $X_{t}:=B_{t}+\alpha B_{t}^{H}$, where $\alpha \in \mathbb{R} \backslash\{0\}$ and:

- B is a d-dimensional BM ,
- B^{H} is a d-dimensional $f B M$ independent of B.
X is called a mixed fractional Brownian motion. It is not a semi-martingale for $H \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{3}{4}\right]$ (Cheridito, 2001). Moreover, it is not scale-invariant for $H \neq 1 / 2$.

Question: Can one prove limit theorems for additive functionals of such a process?

Let $X_{t}:=B_{t}+\alpha B_{t}^{H}$ be a mixed fBM .
Theorem (E, Lê, 2021+)
X admits a jointly continuous family $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ of occupation densities whenever $\left(H \wedge \frac{1}{2}\right) d<1$. Moreover, for all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and any fixed $t \geq 0$, the following limits hold:

Let $X_{t}:=B_{t}+\alpha B_{t}^{H}$ be a mixed fBM.
Theorem (E, Lê, 2021+)
X admits a jointly continuous family $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ of occupation densities whenever $\left(H \wedge \frac{1}{2}\right) d<1$. Moreover, for all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and any fixed $t \geq 0$, the following limits hold:
(1) when $H<\frac{1}{2}$ and $d=1: \lambda^{-\frac{1}{2}} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}(B)$,

Let $X_{t}:=B_{t}+\alpha B_{t}^{H}$ be a mixed fBM .
Theorem (E, Lê, 2021+)
X admits a jointly continuous family $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ of occupation densities whenever $\left(H \wedge \frac{1}{2}\right) d<1$. Moreover, for all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and any fixed $t \geq 0$, the following limits hold:
(1) when $H<\frac{1}{2}$ and $d=1: \lambda^{-\frac{1}{2}} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}(B)$,
(2) when $H>\frac{1}{2}$ and $d=1: \lambda^{H-1} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}\left(B^{H}\right)$,

Let $X_{t}:=B_{t}+\alpha B_{t}^{H}$ be a mixed fBM.
Theorem (E, Lê, 2021+)
X admits a jointly continuous family $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ of occupation densities whenever $\left(H \wedge \frac{1}{2}\right) d<1$. Moreover, for all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and any fixed $t \geq 0$, the following limits hold:
(1) when $H<\frac{1}{2}$ and $d=1: \lambda^{-\frac{1}{2}} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}(B)$,
(2) when $H>\frac{1}{2}$ and $d=1: \lambda^{H-1} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}\left(B^{H}\right)$,
(3) when $H<\frac{1}{2}$ and $H d<1$: $\lambda^{H d-1} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in probability to 0 .

Let $X_{t}:=B_{t}+\alpha B_{t}^{H}$ be a mixed fBM .
Theorem (E, Lê, 2021+)
X admits a jointly continuous family $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$ of occupation densities whenever $\left(H \wedge \frac{1}{2}\right) d<1$. Moreover, for all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and any fixed $t \geq 0$, the following limits hold:
(1) when $H<\frac{1}{2}$ and $d=1: \lambda^{-\frac{1}{2}} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}(B)$,
(2) when $H>\frac{1}{2}$ and $d=1: \lambda^{H-1} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}\left(B^{H}\right)$,
(3) when $H<\frac{1}{2}$ and $H d<1$: $\lambda^{H d-1} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in probability to 0 .

In the sequel we shall sketch the proof of existence of the occupation densities when $\left(H \wedge \frac{1}{2}\right) d<1$ and of the first limit.

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ be a filtered probability space, $m \geq 2$ and $T>0$ fixed. We write L^{m} for $L^{m}(\Omega, \mathcal{F}, \mathbb{P})$ and, for all $s \geq 0$, we write \mathbb{E}^{s} for $\mathbb{E}\left[\cdot \mid \mathcal{F}_{s}\right]$.

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ be a filtered probability space, $m \geq 2$ and $T>0$ fixed. We write L^{m} for $L^{m}(\Omega, \mathcal{F}, \mathbb{P})$ and, for all $s \geq 0$, we write \mathbb{E}^{s} for $\mathbb{E}\left[\cdot \mid \mathcal{F}_{s}\right]$. For $0 \leq s \leq t \leq T$, we assume given $A_{s, t} \in L^{m}$. For $0 \leq s \leq u \leq t \leq T$, we further set

$$
\delta A_{s, u, t}:=A_{s, t}-A_{s, u}-A_{u, t} .
$$

Theorem (Stochastic Sewing Lemma, K. Lê)
Assume that there exist $\Gamma_{1}, \Gamma_{2} \geq 0$ and $\epsilon_{1}, \epsilon_{2}>0$, such that

$$
\begin{equation*}
\left\|\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{1}|t-s|^{1+\epsilon_{1}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\delta A_{s, u, t}-\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{2}|t-s|^{\frac{1}{2}+\epsilon_{2}} . \tag{2}
\end{equation*}
$$

Theorem (Stochastic Sewing Lemma, K. Lê)
Assume that there exist $\Gamma_{1}, \Gamma_{2} \geq 0$ and $\epsilon_{1}, \epsilon_{2}>0$, such that

$$
\begin{equation*}
\left\|\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{1}|t-s|^{1+\epsilon_{1}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\delta A_{s, u, t}-\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{2}|t-s|^{\frac{1}{2}+\epsilon_{2}} . \tag{2}
\end{equation*}
$$

Then there exist a constant $C=C\left(m, \epsilon_{1}, \epsilon_{2}\right)$ and an adapted process $\left(\mathcal{A}_{t}\right)_{0 \leq t \leq T}$ in L^{m} such that $\mathcal{A}_{0}=0$ and satisfying

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right\|_{L^{m}} \leq C \Gamma_{1}|t-s|^{1+\epsilon_{1}}+C \Gamma_{2}|t-s|^{\frac{1}{2}+\epsilon_{2}}
$$

and

$$
\left\|\mathbb{E}^{s}\left[\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right]\right\|_{L^{m}} \leq C \Gamma_{1}|t-s|^{1+\epsilon_{1}}
$$

Such a process \mathcal{A} is unique up to modification.

Remark: If there exist $\epsilon>0$ and $\alpha \in[0,1)$ such that $\left\|A_{s, t}\right\|_{L^{m}} \leq \Gamma|t-s|^{\frac{1}{2}+\epsilon}$, and $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=0$, then the assumptions of the SSL are fulfilled, and we have

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right\|_{L^{m}} \lesssim \Gamma|t-s|^{\frac{1}{2}+\epsilon}
$$

whence, by the triangle inequality

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}\right\|_{L^{m}} \lesssim \Gamma|t-s|^{\frac{1}{2}+\epsilon} .
$$

Remark: If there exist $\epsilon>0$ and $\alpha \in[0,1)$ such that $\left\|A_{s, t}\right\|_{L^{m}} \leq \Gamma|t-s|^{\frac{1}{2}+\epsilon}$, and $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=0$, then the assumptions of the SSL are fulfilled, and we have

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right\|_{L^{m}} \lesssim \Gamma|t-s|^{\frac{1}{2}+\epsilon}
$$

whence, by the triangle inequality

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}\right\|_{L^{m}} \lesssim \Gamma|t-s|^{\frac{1}{2}+\epsilon} .
$$

Corollary (Stability with respect to the germ)
If $A_{s, t}$ and $\tilde{A}_{s, t}$ are two germs such that $\left\|A_{s, t}-\tilde{A}_{s, t}\right\|_{L^{m}} \leq \Gamma|t-s|^{\frac{1}{2}+\epsilon}$, and satisfying $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=\mathbb{E}^{s}\left[\delta \tilde{A}_{s, u, t}\right]=0$, then for all $t \geq 0$,

$$
\left\|\mathcal{A}_{t}-\tilde{\mathcal{A}}_{t}\right\|_{L^{m}} \lesssim \Gamma t^{\frac{1}{2}+\epsilon} .
$$

Remark: If there exist $\epsilon>0$ and $\alpha \in[0,1)$ such that $\left\|A_{s, t}\right\|_{L^{m}} \leq \Gamma|t-s|^{\frac{1}{2}+\epsilon}$, and $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=0$, then the assumptions of the SSL are fulfilled, and we have

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right\|_{L^{m}} \lesssim \Gamma|t-s|^{\frac{1}{2}+\epsilon}
$$

whence, by the triangle inequality

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}\right\|_{L^{m}} \lesssim \Gamma|t-s|^{\frac{1}{2}+\epsilon} .
$$

Corollary (Stability with respect to the germ)
If $A_{s, t}$ and $\tilde{A}_{s, t}$ are two germs such that $\left\|A_{s, t}-\tilde{A}_{s, t}\right\|_{L^{m}} \leq \Gamma|t-s|^{\frac{1}{2}+\epsilon}$, and satisfying $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=\mathbb{E}^{s}\left[\delta \tilde{A}_{s, u, t}\right]=0$, then for all $t \geq 0$,

$$
\left\|\mathcal{A}_{t}-\tilde{\mathcal{A}}_{t}\right\|_{L^{m}} \lesssim \Gamma t^{\frac{1}{2}+\epsilon} .
$$

Proof: apply the above Remark to $A-\tilde{A}$.

To construct occupation densities, we will appeal to a singular version of the SSL due to Khoa.

To construct occupation densities, we will appeal to a singular version of the SSL due to Khoa.
Assume that, for some $\alpha_{1} \in[0,1)$ and $\alpha_{2} \in[0,1 / 2)$, we have

$$
\begin{equation*}
\left\|\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{1} u^{-\alpha_{1}}|t-s|^{1+\epsilon_{1}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\delta A_{s, u, t}-\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{2} u^{-\alpha_{2}}|t-s|^{\frac{1}{2}+\epsilon_{2}} \tag{4}
\end{equation*}
$$

To construct occupation densities, we will appeal to a singular version of the SSL due to Khoa.
Assume that, for some $\alpha_{1} \in[0,1)$ and $\alpha_{2} \in[0,1 / 2)$, we have

$$
\begin{equation*}
\left\|\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{1} u^{-\alpha_{1}}|t-s|^{1+\epsilon_{1}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\delta A_{s, u, t}-\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]\right\|_{L^{m}} \leq \Gamma_{2} u^{-\alpha_{2}}|t-s|^{\frac{1}{2}+\epsilon_{2}} \tag{4}
\end{equation*}
$$

Then the conclusions of the SSL holds, but the estimates are replaced with

$$
\begin{aligned}
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right\|_{L^{m}} & \leq C \Gamma_{1}\left(\int_{s}^{t} u^{-\alpha_{1}} d u\right)|t-s|^{\epsilon_{1}} \\
& +C \Gamma_{2}\left(\int_{s}^{t} u^{-2 \alpha_{2}} d u\right)^{1 / 2}|t-s|^{\epsilon_{2}}
\end{aligned}
$$

and

$$
\left\|\mathbb{E}^{s}\left[\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right]\right\|_{L^{m}} \leq C \Gamma_{1}\left(\int_{s}^{t} u^{-\alpha_{1}} d u\right)|t-s|^{\epsilon_{1}} .
$$

In the sequel we sketch the proof of two statements:

In the sequel we sketch the proof of two statements:
Proposition (Existence of occupation densities)
Let $d \geq 1$ and $H \in(0,1)$ such that $\left(H \wedge \frac{1}{2}\right) d<1$, and let $\alpha \in \mathbb{R} \backslash\{0\}$. Then $X_{t}:=B_{t}+\alpha B_{t}^{H}$ admits a family of occupation densities $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$. Moreover, for all $a \in \mathbb{R}^{d}, L_{t}^{a}$ is in L^{m} for all $m \geq 2$ such that $\left(H \wedge \frac{1}{2}\right) d<\frac{m}{2(m-1)}$.

In the sequel we sketch the proof of two statements:
Proposition (Existence of occupation densities)
Let $d \geq 1$ and $H \in(0,1)$ such that $\left(H \wedge \frac{1}{2}\right) d<1$, and let $\alpha \in \mathbb{R} \backslash\{0\}$. Then $X_{t}:=B_{t}+\alpha B_{t}^{H}$ admits a family of occupation densities $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$. Moreover, for all $a \in \mathbb{R}^{d}, L_{t}^{a}$ is in L^{m} for all $m \geq 2$ such that $\left(H \wedge \frac{1}{2}\right) d<\frac{m}{2(m-1)}$.

Example: When $d=1$ and $H<\frac{1}{2}$, occupation densities exist in L^{∞}.

In the sequel we sketch the proof of two statements:
Proposition (Existence of occupation densities)
Let $d \geq 1$ and $H \in(0,1)$ such that $\left(H \wedge \frac{1}{2}\right) d<1$, and let $\alpha \in \mathbb{R} \backslash\{0\}$. Then $X_{t}:=B_{t}+\alpha B_{t}^{H}$ admits a family of occupation densities $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$. Moreover, for all $a \in \mathbb{R}^{d}, L_{t}^{a}$ is in L^{m} for all $m \geq 2$ such that $\left(H \wedge \frac{1}{2}\right) d<\frac{m}{2(m-1)}$.

Example: When $d=1$ and $H<\frac{1}{2}$, occupation densities exist in L^{∞}. Remark: Above we assumed $\alpha \neq 0$. In the case $\alpha=0$, we would have $X=B$: then occupation densities exist only when $d=1$, and are in L^{m} for all $m<\infty$.

In the sequel we sketch the proof of two statements:
Proposition (Existence of occupation densities)
Let $d \geq 1$ and $H \in(0,1)$ such that $\left(H \wedge \frac{1}{2}\right) d<1$, and let $\alpha \in \mathbb{R} \backslash\{0\}$. Then $X_{t}:=B_{t}+\alpha B_{t}^{H}$ admits a family of occupation densities $\left(L_{t}^{a}\right)_{a \in \mathbb{R}^{d}, t \geq 0}$. Moreover, for all $a \in \mathbb{R}^{d}, L_{t}^{a}$ is in L^{m} for all $m \geq 2$ such that $\left(H \wedge \frac{1}{2}\right) d<\frac{m}{2(m-1)}$.

Example: When $d=1$ and $H<\frac{1}{2}$, occupation densities exist in L^{∞}. Remark: Above we assumed $\alpha \neq 0$. In the case $\alpha=0$, we would have $X=B$: then occupation densities exist only when $d=1$, and are in L^{m} for all $m<\infty$.

Proposition (Scaling limit for $d=1, H<1 / 2$)
Assume that $H<\frac{1}{2}$ and $d=1$. Then, for all $f \in L^{1}(\mathbb{R})$ and $t \geq 0$ fixed, $\lambda^{-\frac{1}{2}} \int_{0}^{\lambda t} f\left(X_{r}\right) d r$ converges as $\lambda \rightarrow \infty$ in distribution to $\int_{\mathbb{R}} f(y) d y L_{t}^{0}(B)$.

Note that the above statements only concern the law of $\left(X_{t}\right)_{t \geq 0}$, so we may choose how we construct this process.

Note that the above statements only concern the law of $\left(X_{t}\right)_{t \geq 0}$, so we may choose how we construct this process.
Let $\left(B_{t}\right)_{t \geq 0}$ and $\left(W_{t}\right)_{t \geq 0}$ be two independent standard Brownian motions in \mathbb{R}^{d} defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be the filtration defined by

$$
\mathcal{F}_{t}=\sigma\left(\left\{\left(B_{s}, W_{s}\right), s \leq t\right\}\right)
$$

Note that the above statements only concern the law of $\left(X_{t}\right)_{t \geq 0}$, so we may choose how we construct this process.
Let $\left(B_{t}\right)_{t \geq 0}$ and $\left(W_{t}\right)_{t \geq 0}$ be two independent standard Brownian motions in \mathbb{R}^{d} defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be the filtration defined by

$$
\mathcal{F}_{t}=\sigma\left(\left\{\left(B_{s}, W_{s}\right), s \leq t\right\}\right)
$$

We construct the $\mathrm{fBM}\left(B_{t}^{H}\right)_{t \geq 0}$ using the Mandelbrot-van Ness representation:

$$
B_{t}^{H}=c_{H} \int_{-\infty}^{t}\left[(t-r)_{+}^{H-1 / 2}-(-r)_{+}^{H-1 / 2}\right] d W_{r},
$$

with c_{H} an appropriate constant.

Note that the above statements only concern the law of $\left(X_{t}\right)_{t \geq 0}$, so we may choose how we construct this process.
Let $\left(B_{t}\right)_{t \geq 0}$ and $\left(W_{t}\right)_{t \geq 0}$ be two independent standard Brownian motions in \mathbb{R}^{d} defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be the filtration defined by

$$
\mathcal{F}_{t}=\sigma\left(\left\{\left(B_{s}, W_{s}\right), s \leq t\right\}\right)
$$

We construct the $\mathrm{fBM}\left(B_{t}^{H}\right)_{t \geq 0}$ using the Mandelbrot-van Ness representation:

$$
B_{t}^{H}=c_{H} \int_{-\infty}^{t}\left[(t-r)_{+}^{H-1 / 2}-(-r)_{+}^{H-1 / 2}\right] d W_{r},
$$

with c_{H} an appropriate constant. Finally we set $X_{t}=B_{t}+\alpha B_{t}^{H}$. Note that $\left(X_{t}\right)_{t \geq 0}$ is adapted w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geq 0}$.

Proof idea for the existence statement Let $a \in \mathbb{R}^{d}$. We would like to construct L_{t}^{a} using the SSL. Formally, $L_{t}^{a}=\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$. What would be a good germ?

Proof idea for the existence statement Let $a \in \mathbb{R}^{d}$. We would like to construct L_{t}^{a} using the SSL. Formally, $L_{t}^{a}=\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$. What would be a good germ?
Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded, Borel measurable function. Trivially, a germ generating $\mathcal{A}_{t}:=\int_{0}^{t} g\left(X_{s}\right) d s$ is $A_{s, t}=\int_{s}^{t} g\left(X_{u}\right) d u$.

Proof idea for the existence statement Let $a \in \mathbb{R}^{d}$. We would like to construct L_{t}^{a} using the SSL. Formally, $L_{t}^{a}=\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$. What would be a good germ?
Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded, Borel measurable function. Trivially, a germ generating $\mathcal{A}_{t}:=\int_{0}^{t} g\left(X_{s}\right) d s$ is $A_{s, t}=\int_{s}^{t} g\left(X_{u}\right) d u$.
But let us consider instead $\tilde{A}_{s, t}:=\int_{s}^{t} \mathbb{E}^{s}\left(g\left(X_{r}\right)\right) d r$. Then $\tilde{A}_{s, t}$ satisfies the assumptions of the SSL. Indeed, $\delta \tilde{A}_{s, u, t}=\int_{u}^{t}\left(\mathbb{E}^{s}\left[g\left(X_{r}\right)\right]-\mathbb{E}^{u}\left[g\left(X_{r}\right)\right]\right) d r$, hence $\mathbb{E}^{s}\left[\delta \tilde{A}_{s, u, t}\right]=0$, and

$$
\left\|\delta \tilde{A}_{s, u, t}\right\|_{L^{m}} \leq \int_{u}^{t}\left\|\mathbb{E}^{s}\left[g\left(X_{r}\right)\right]-\mathbb{E}^{u}\left[g\left(X_{r}\right)\right]\right\|_{L^{m}} d r \leq 2\|g\|_{\infty}|t-s|
$$

Proof idea for the existence statement Let $a \in \mathbb{R}^{d}$. We would like to construct L_{t}^{a} using the SSL. Formally, $L_{t}^{a}=\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$. What would be a good germ?
Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded, Borel measurable function. Trivially, a germ generating $\mathcal{A}_{t}:=\int_{0}^{t} g\left(X_{s}\right) d s$ is $A_{s, t}=\int_{s}^{t} g\left(X_{u}\right) d u$.
But let us consider instead $\tilde{A}_{s, t}:=\int_{s}^{t} \mathbb{E}^{s}\left(g\left(X_{r}\right)\right) d r$. Then $\tilde{A}_{s, t}$ satisfies the assumptions of the SSL. Indeed, $\delta \tilde{A}_{s, u, t}=\int_{u}^{t}\left(\mathbb{E}^{s}\left[g\left(X_{r}\right)\right]-\mathbb{E}^{u}\left[g\left(X_{r}\right)\right]\right) d r$, hence $\mathbb{E}^{s}\left[\delta \tilde{A}_{s, u, t}\right]=0$, and

$$
\left\|\delta \tilde{A}_{s, u, t}\right\|_{L^{m}} \leq \int_{u}^{t}\left\|\mathbb{E}^{s}\left[g\left(X_{r}\right)\right]-\mathbb{E}^{u}\left[g\left(X_{r}\right)\right]\right\|_{L^{m}} d r \leq 2\|g\|_{\infty}|t-s|
$$

Moreover, the germ $\tilde{A}_{s, t}$ also generates the process \mathcal{A}_{t}. Indeed $\mathbb{E}^{s}\left[\mathcal{A}_{t}-\mathcal{A}_{s}-\tilde{A}_{s, t}\right]=0$ and

$$
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}-\tilde{A}_{s, t}\right\|_{L^{m}}=\left\|\int_{s}^{t}\left(g\left(X_{r}\right)-\mathbb{E}^{s}\left[g\left(X_{r}\right)\right]\right) d r\right\|_{L^{m}} \leq 2\|g\|_{\infty}|t-s|
$$

Back to the construction of $\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$: the above motivates to consider the germ $A_{s, t}:=\int_{s}^{t} \mathbb{E}^{s}\left(\delta_{a}\left(X_{u}\right)\right) d u$.

Back to the construction of $\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$: the above motivates to consider the germ $A_{s, t}:=\int_{s}^{t} \mathbb{E}^{s}\left(\delta_{a}\left(X_{u}\right)\right) d u$.
Fact: For all $s \leq t$, we can write $X_{t}=\mathbb{E}^{s}\left(X_{t}\right) \stackrel{\Perp}{+} Z_{s, t}$, with

- $\mathbb{E}^{s}\left(X_{t}\right) \sim \mathcal{N}\left(0, \kappa(s, t) I_{d}\right)$, where $\kappa(s, t) \gtrsim s^{2\left(H \wedge \frac{1}{2}\right)}$,
- $Z_{s, t} \sim \mathcal{N}\left(0, \rho(s, t) I_{d}\right)$, where

$$
\rho(s, t)=|t-s|+\alpha^{2} c_{H}|t-s|^{2 H} \gtrsim|t-s|^{2\left(H \wedge \frac{1}{2}\right)} .
$$

Back to the construction of $\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$: the above motivates to consider the germ $A_{s, t}:=\int_{s}^{t} \mathbb{E}^{s}\left(\delta_{a}\left(X_{u}\right)\right) d u$.
Fact: For all $s \leq t$, we can write $X_{t}=\mathbb{E}^{s}\left(X_{t}\right) \stackrel{\Perp}{+} Z_{s, t}$, with

- $\mathbb{E}^{s}\left(X_{t}\right) \sim \mathcal{N}\left(0, \kappa(s, t) I_{d}\right)$, where $\kappa(s, t) \gtrsim s^{2\left(H \wedge \frac{1}{2}\right)}$,
- $Z_{s, t} \sim \mathcal{N}\left(0, \rho(s, t) I_{d}\right)$, where

$$
\rho(s, t)=|t-s|+\alpha^{2} c_{H}|t-s|^{2 H} \gtrsim|t-s|^{2\left(H \wedge \frac{1}{2}\right)} .
$$

Therefore, with $p_{t}(x):=\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{\|x\|^{2}}{2 t}\right)$ the heat kernel in \mathbb{R}^{d}, we have

$$
\mathbb{E}^{s}\left(\delta_{a}\left(X_{u}\right)\right)=\mathbb{E}^{s}\left(\delta_{a}\left(\mathbb{E}^{s}\left(X_{u}\right)+Z_{s, u}\right)\right)=p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right)
$$

Note that $\left(p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right)\right)_{0 \leq s<t}$ is a martingale.

Back to the construction of $\int_{0}^{t} \delta_{a}\left(X_{s}\right) d s$: the above motivates to consider the germ $A_{s, t}:=\int_{s}^{t} \mathbb{E}^{s}\left(\delta_{a}\left(X_{u}\right)\right) d u$.
Fact: For all $s \leq t$, we can write $X_{t}=\mathbb{E}^{s}\left(X_{t}\right) \stackrel{\Perp}{+} Z_{s, t}$, with

- $\mathbb{E}^{s}\left(X_{t}\right) \sim \mathcal{N}\left(0, \kappa(s, t) I_{d}\right)$, where $\kappa(s, t) \gtrsim s^{2\left(H \wedge \frac{1}{2}\right)}$,
- $Z_{s, t} \sim \mathcal{N}\left(0, \rho(s, t) I_{d}\right)$, where

$$
\rho(s, t)=|t-s|+\alpha^{2} c_{H}|t-s|^{2 H} \gtrsim|t-s|^{2\left(H \wedge \frac{1}{2}\right)} .
$$

Therefore, with $p_{t}(x):=\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{\|x\|^{2}}{2 t}\right)$ the heat kernel in \mathbb{R}^{d}, we have

$$
\mathbb{E}^{s}\left(\delta_{a}\left(X_{u}\right)\right)=\mathbb{E}^{s}\left(\delta_{a}\left(\mathbb{E}^{s}\left(X_{u}\right)+Z_{s, u}\right)\right)=p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right)
$$

Note that $\left(p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right)\right)_{0 \leq s<t}$ is a martingale.
Let $A_{s, t}:=\int_{s}^{t} p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right) d u$. We check that $A_{s, t}$ satisfies the assumptions of the SSL.

Let $A_{s, t}=\int_{s}^{t} p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right) d u$. Then

$$
\delta A_{s, u, t}=\int_{u}^{t}\left(p_{\rho(s, r)}\left(a-\mathbb{E}^{s}\left(X_{r}\right)\right)-p_{\rho(u, r)}\left(a-\mathbb{E}^{u}\left(X_{r}\right)\right)\right) d r
$$

In particular $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=0$. To bound $\left\|\delta A_{s, u, t}\right\|_{L^{m}}$, it suffices to bound $\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}}$ for any $v<r$. We use the following:

Let $A_{s, t}=\int_{s}^{t} p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right) d u$. Then

$$
\delta A_{s, u, t}=\int_{u}^{t}\left(p_{\rho(s, r)}\left(a-\mathbb{E}^{s}\left(X_{r}\right)\right)-p_{\rho(u, r)}\left(a-\mathbb{E}^{\mu}\left(X_{r}\right)\right)\right) d r
$$

In particular $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=0$. To bound $\left\|\delta A_{s, u, t}\right\|_{L^{m}}$, it suffices to bound $\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}}$ for any $v<r$. We use the following:

Lemma
Let $\kappa, \rho>0, X \sim \mathcal{N}\left(0, \kappa I_{d}\right)$, and $a \in \mathbb{R}^{d}$. Then, for all $m \geq 2$,

$$
\left\|p_{\rho}(a-X)\right\|_{L^{m}} \leq C(d) \kappa^{-\frac{d}{2 m}} \rho^{-\frac{d}{2}\left(1-\frac{1}{m}\right)}
$$

where $C(d)>0$ depends only on d.

Let $A_{s, t}=\int_{s}^{t} p_{\rho(s, u)}\left(a-\mathbb{E}^{s}\left(X_{u}\right)\right) d u$. Then

$$
\delta A_{s, u, t}=\int_{u}^{t}\left(p_{\rho(s, r)}\left(a-\mathbb{E}^{s}\left(X_{r}\right)\right)-p_{\rho(u, r)}\left(a-\mathbb{E}^{u}\left(X_{r}\right)\right)\right) d r
$$

In particular $\mathbb{E}^{s}\left[\delta A_{s, u, t}\right]=0$. To bound $\left\|\delta A_{s, u, t}\right\|_{L^{m}}$, it suffices to bound $\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}}$ for any $v<r$. We use the following:

Lemma

Let $\kappa, \rho>0, X \sim \mathcal{N}\left(0, \kappa I_{d}\right)$, and $a \in \mathbb{R}^{d}$. Then, for all $m \geq 2$,

$$
\left\|p_{\rho}(a-X)\right\|_{L^{m}} \leq C(d) \kappa^{-\frac{d}{2 m}} \rho^{-\frac{d}{2}\left(1-\frac{1}{m}\right)}
$$

where $C(d)>0$ depends only on d.
Proof: Assume for simplicity $m<\infty$. Then

$$
\mathbb{E}\left[p_{\rho}(a-X)^{m}\right]=\int_{\mathbb{R}^{d}} d x p_{\kappa}(x) p_{\rho}(a-x)^{m} \leq \underbrace{\left\|p_{\kappa}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}}_{\leq C(d) \kappa^{-\frac{d}{2}}} \underbrace{\left\|p_{\rho}^{m}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}}_{C(d) \rho^{-\frac{d}{2}(m-1)}}
$$

whence the claim.

By the previous lemma, for all $v<r$, we obtain

$$
\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}} \lesssim \kappa(v, r)^{-\frac{d}{2 m}} \rho(v, r)^{-\frac{d}{2}\left(1-\frac{1}{m}\right)}
$$

By the previous lemma, for all $v<r$, we obtain

$$
\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}} \lesssim \kappa(v, r)^{-\frac{d}{2 m}} \rho(v, r)^{-\frac{d}{2}\left(1-\frac{1}{m}\right)},
$$

Recalling that $\kappa(v, r) \gtrsim v^{2\left(H \wedge \frac{1}{2}\right)}$ and $\rho(v, r) \gtrsim|r-v|^{2\left(H \wedge \frac{1}{2}\right)}$, we get

$$
\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}} \lesssim v^{-\frac{d}{m}\left(H \wedge \frac{1}{2}\right)}|r-v|^{-d\left(H \wedge \frac{1}{2}\right)\left(1-\frac{1}{m}\right)},
$$

By the previous lemma, for all $v<r$, we obtain

$$
\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}} \lesssim \kappa(v, r)^{-\frac{d}{2 m}} \rho(v, r)^{-\frac{d}{2}\left(1-\frac{1}{m}\right)},
$$

Recalling that $\kappa(v, r) \gtrsim v^{2\left(H \wedge \frac{1}{2}\right)}$ and $\rho(v, r) \gtrsim|r-v|^{2\left(H \wedge \frac{1}{2}\right)}$, we get

$$
\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}} \lesssim v^{-\frac{d}{m}\left(H \wedge \frac{1}{2}\right)}|r-v|^{-d\left(H \wedge \frac{1}{2}\right)\left(1-\frac{1}{m}\right)},
$$

so that

$$
\begin{aligned}
\left\|\delta A_{s, u, t}\right\|_{L^{m}} & =\left\|\int_{u}^{t}\left(p_{\rho(s, r)}\left(a-\mathbb{E}^{s}\left(X_{r}\right)\right)-p_{\rho(u, r)}\left(a-\mathbb{E}^{\mu}\left(X_{r}\right)\right)\right) d r\right\|_{L^{m}} \\
& \lesssim s^{-\alpha_{1}}|t-s|^{\frac{1}{2}+\epsilon_{1}}
\end{aligned}
$$

where $\alpha_{1}:=\frac{d}{m}\left(H \wedge \frac{1}{2}\right)$ and $\epsilon_{1}:=\frac{1}{2}-d\left(H \wedge \frac{1}{2}\right)\left(1-\frac{1}{m}\right)$. Since we assumed $d\left(H \wedge \frac{1}{2}\right)<\frac{m}{2(m-1)}$, we have $\alpha_{1} \in\left[0, \frac{1}{2}\right)$ and $\epsilon_{1}>0$. So the SSL applies, and we set $L_{t}^{a}:=\mathcal{A}_{t} \in L^{m}$.

By the previous lemma, for all $v<r$, we obtain

$$
\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}} \lesssim \kappa(v, r)^{-\frac{d}{2 m}} \rho(v, r)^{-\frac{d}{2}\left(1-\frac{1}{m}\right)},
$$

Recalling that $\kappa(v, r) \gtrsim v^{2\left(H \wedge \frac{1}{2}\right)}$ and $\rho(v, r) \gtrsim|r-v|^{2\left(H \wedge \frac{1}{2}\right)}$, we get

$$
\left\|p_{\rho(v, r)}\left(a-\mathbb{E}^{v}\left(X_{r}\right)\right)\right\|_{L^{m}} \lesssim v^{-\frac{d}{m}\left(H \wedge \frac{1}{2}\right)}|r-v|^{-d\left(H \wedge \frac{1}{2}\right)\left(1-\frac{1}{m}\right)},
$$

so that

$$
\begin{aligned}
\left\|\delta A_{s, u, t}\right\|_{L^{m}} & =\left\|\int_{u}^{t}\left(p_{\rho(s, r)}\left(a-\mathbb{E}^{s}\left(X_{r}\right)\right)-p_{\rho(u, r)}\left(a-\mathbb{E}^{\mu}\left(X_{r}\right)\right)\right) d r\right\|_{L^{m}} \\
& \lesssim s^{-\alpha_{1}}|t-s|^{\frac{1}{2}+\epsilon_{1}}
\end{aligned}
$$

where $\alpha_{1}:=\frac{d}{m}\left(H \wedge \frac{1}{2}\right)$ and $\epsilon_{1}:=\frac{1}{2}-d\left(H \wedge \frac{1}{2}\right)\left(1-\frac{1}{m}\right)$. Since we assumed $d\left(H \wedge \frac{1}{2}\right)<\frac{m}{2(m-1)}$, we have $\alpha_{1} \in\left[0, \frac{1}{2}\right)$ and $\epsilon_{1}>0$. So the SSL applies, and we set $L_{t}^{a}:=\mathcal{A}_{t} \in L^{m}$. There remains to check the OTF: we omit the details here.

Proof of the scaling limit, case $d=1, H<1 / 2$.

Proof of the scaling limit, case $d=1, H<1 / 2$.

Let $X_{t}=B_{t}+\alpha B_{t}^{H}$. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$, and $t \geq 0$. Want to show

$$
\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda t} f\left(X_{s}\right) d s \underset{\lambda \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\int_{\mathbb{R}^{d}} f(x) d x\right) L_{t}^{0}(B) .
$$

Proof of the scaling limit, case $d=1, H<1 / 2$.
Let $X_{t}=B_{t}+\alpha B_{t}^{H}$. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$, and $t \geq 0$. Want to show

$$
\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda t} f\left(X_{s}\right) d s \underset{\lambda \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\int_{\mathbb{R}^{d}} f(x) d x\right) L_{t}^{0}(B)
$$

Performing the change of variable $s=\lambda u$, and by the scaling property of $B M$ and $f B M$, we have

$$
\begin{aligned}
\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda t} f\left(X_{s}\right) d s & =\sqrt{\lambda} \int_{0}^{t} f\left(X_{\lambda u}\right) d u \\
& \stackrel{(d)}{=} \sqrt{\lambda} \int_{0}^{t} f\left(\sqrt{\lambda}\left(B_{u}+\alpha \lambda^{H-\frac{1}{2}} B_{u}^{H}\right)\right) d u
\end{aligned}
$$

Proof of the scaling limit, case $d=1, H<1 / 2$.
Let $X_{t}=B_{t}+\alpha B_{t}^{H}$. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$, and $t \geq 0$. Want to show

$$
\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda t} f\left(X_{s}\right) d s \underset{\lambda \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\int_{\mathbb{R}^{d}} f(x) d x\right) L_{t}^{0}(B)
$$

Performing the change of variable $s=\lambda u$, and by the scaling property of $B M$ and fBM, we have

$$
\begin{aligned}
\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda t} f\left(X_{s}\right) d s & =\sqrt{\lambda} \int_{0}^{t} f\left(X_{\lambda u}\right) d u \\
& \stackrel{(d)}{=} \sqrt{\lambda} \int_{0}^{t} f\left(\sqrt{\lambda}\left(B_{u}+\alpha \lambda^{H-\frac{1}{2}} B_{u}^{H}\right)\right) d u
\end{aligned}
$$

By the occupation times formula, and performing the change of variable $b=\sqrt{\lambda} a$, we may rewrite this as
$\sqrt{\lambda} \int_{-\infty}^{+\infty} f(\sqrt{\lambda} a) L_{t}^{a}\left(B+\alpha \lambda^{H-\frac{1}{2}}\right) d a=\int_{-\infty}^{+\infty} f(b) L_{t}^{b / \sqrt{\lambda}}\left(B+\alpha \lambda^{H-\frac{1}{2}}\right) d b$.

We now use the following result, which can be proven via the SSL:
Lemma
Let $m \in[1, \infty)$. There exists $\eta>0$ such that

$$
\left\|L_{t}^{b / \sqrt{\lambda}}\left(B+\alpha \lambda^{H-\frac{1}{2}}\right)-L_{t}^{0}(B)\right\|_{L^{m}} \lesssim \lambda^{-\eta}
$$

uniformly in $\lambda \geq 1$, locally uniformly in $b \in \mathbb{R}$. Moreover,

$$
\left\|L_{t}^{b / \sqrt{\lambda}}\left(B+\alpha \lambda^{H-\frac{1}{2}}\right)\right\|_{L^{m}} \text { is bounded uniformly in } \lambda \geq 1 \text { and } b \in \mathbb{R} .
$$

We now use the following result, which can be proven via the SSL:
Lemma
Let $m \in[1, \infty)$. There exists $\eta>0$ such that

$$
\left\|L_{t}^{b / \sqrt{\lambda}}\left(B+\alpha \lambda^{H-\frac{1}{2}}\right)-L_{t}^{0}(B)\right\|_{L^{m}} \lesssim \lambda^{-\eta}
$$

uniformly in $\lambda \geq 1$, locally uniformly in $b \in \mathbb{R}$. Moreover,
$\left\|L_{t}^{b / \sqrt{\lambda}}\left(B+\alpha \lambda^{H-\frac{1}{2}}\right)\right\|_{L^{m}}$ is bounded uniformly in $\lambda \geq 1$ and $b \in \mathbb{R}$.
Thanks to these estimates, one easily concludes that, for any $m \in[1, \infty)$,

$$
\int_{\mathbb{R}} f(b) L_{t}^{b / \sqrt{\lambda}}\left(B+\alpha \lambda^{H-\frac{1}{2}}\right) d b \underset{\lambda \rightarrow \infty}{\longrightarrow}\left(\int_{\mathbb{R}} f(b) d b\right) L_{t}^{0}(B)
$$

in L^{m}. Hence the convergence also holds in distribution. This concludes the proof.

There remain many interesting open questions:

There remain many interesting open questions:

- Fluctuations? (what scaling if $\int f(x) d x=0$?)

There remain many interesting open questions:

- Fluctuations? (what scaling if $\int f(x) d x=0$?)
- Correct scaling when $d \geq 2, H<\frac{1}{2}$ and $d H<1$?

There remain many interesting open questions:

- Fluctuations? (what scaling if $\int f(x) d x=0$?)
- Correct scaling when $d \geq 2, H<\frac{1}{2}$ and $d H<1$?
- Scaling limits for additive functionals of more complicated processes (e.g. solutions to SPDEs)?

