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Let d > 1, and let (X¢)r>0 be a stochastic process with values in RY.

A family of occupation densities for (X;)¢>o is defined (here) as a process
(L7)aerd +>0 such that, almost-surely, we have the occupation times

formula .
/ f(Xs)ds = / f(a) L] da,
0 Rd

valid for all f : RY — R, Borel measurable.
We shall sometimes write LZ(X) to emphasize the dependence on the
underlying process X.
Formally, L2(X fo s) ds, where ¢, is the Dirac mass at a.
We say that the family of occupatlon densities (L7),cpe ¢>0 is jointly
continuous if, almost-surely, (a, t) — L7 is continuous.
There exist various approaches to the construction of occupation densities,
that apply in different contexts. Standard constructions apply when X is:
@ a real-valued semi-martingale,
@ a Markov process,

@ a Gaussian process with an appropriate covariance.
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Why are we interested in occupation densities?

For many reasons...e.g:
@ they appear in some very interesting SDEs and SPDEs.

@ they describe scaling limits of additive functionals of the underlying
process.

In this talk we will address the second application.
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Theorem (Darling-Kac Theorem)

Let (B;) be a standard Brownian motion in R, and (L{(B))acr, t>0 the
associated family of occupation densities. Let f € LY(R) and t > 0 fixed.
Then, as A — oo, f ) ds converges in distribution to

(o) LB

Proof: Performing the change of variable s = Au, and by the scaling
property of Brownian motion, we have

f/m ds—f/ BAudu—f/ fF(VAB,)

By the occupation times formula, and performing the change of variable
b = +/)\a, the latter equals

fA/+OO f(vV/Aa) L2(B)da = /+OO £(b) LYX(B) ab.

—00

As A\ — +0o0, by dominated convergence, the latter integral converges to
(fj;" £(b) db) L9(B), whence the claim.

4/22



Let now (B!);>0 be a d-dimensional fractional Brownian motion (fBM) of
Hurst parameter H € (0,1). Thatis, BY = (B, ..., B/"¥) is a centered
Gaussian process with covariance matrix

i . t2H+52H—t—S2H
E[BSH:I BZ»LIJ] :5I,j| | ’ | 5 | ‘ ’

1<ij<d.
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Let now (B!);>0 be a d-dimensional fractional Brownian motion (fBM) of
Hurst parameter H € (0,1). Thatis, BY = (B, ..., B/"¥) is a centered

Gaussian process with covariance matrix
|H2H ’ﬂ2H<—|t——SPH

3 ; 1<ij<d.

]E[BH N BH,J]

(BH)¢>0 is scale-invariant:

d
VA>0, (BM)mo L (ABM)s0.

Assume Hd < 1. Then one can prove (c.f. Geman-Horowitz, 1980) that
(B{')¢>0 admits jointly continuous occupation densities (L?(B")),cra 150

One can further prove limit theorems for additive functionals of (B/?):>o.
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-
Theorem (c.f. Hu-Nualart-Xu, 2014)

Assume that Hd < 1. Let (B}') be a d-dimensional fBM of Hurst
parameter H, and let (L3(B")),crs ;>0 be the associated family of
occupation densities. Let f € L*(RY) and t > 0 fixed. Then, as A\ — oo,
AHA=1 (AT £(BH) ds converges in distribution to ( [pa f) L(BY).

Proof: Performing the change of variable s = Au, and by the scaling
property of the fBM, we have

Hd—1 At H _ \Hd ‘ H (d) \Hd ‘ HpH
A f(B)ds =\ f(By,)du = X f(\"B}) du.
0 0 0

By the occupation times formula, and performing the change of variable
b = A\"a, the latter equals

)\Hd/ f(\Ha) L;’(BH)da:/ £(b) LY (BH) ab.
Rd Rd

As A — +00, by dominated convergence, the latter integral converges to
(Jga £(b) db) LY(BM), whence the claim.
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for Markov processes with stationnary transition densities (covering,
e.g., 2-dimensional Brownian motion).

e Yamada (1986): fluctuation results in the case of a Brownian motion.

o Fitzsimmons-Getoor (1992): fluctuation results in the case of stable
processes.

@ Hu-Nualart-Xu (2014): fluctuation results in the case of fBM

Most of the above results rely heavily on two ingredients:
@ existence of a jointly continuous family of occupation densities

@ scale invariance of the underlying process

What can we say for a non-Markovian process that is not scale-invariant?
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A non-scale-invariant process

We consider the process X; := B; + aB}, where o € R\ {0} and:
@ B is a d-dimensional BM,
e BH is a d-dimensional fBM independent of B.
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A non-scale-invariant process

We consider the process X; := B; + aB}, where o € R\ {0} and:
@ B is a d-dimensional BM,

e BH is a d-dimensional fBM independent of B.

X is called a mixed fractional Brownian motion. It is not a

semi-martingale for H € (0, 3) U (3, 2] (Cheridito, 2001). Moreover, it is
not scale-invariant for H # 1/2.

Question: Can one prove limit theorems for additive functionals of such a
process?
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Let X; := B; + aB[’ be a mixed fBM.
Theorem (E, L&, 2021+)

X admits a jointly continuous family (L7),cgd +>o of occupation densities
whenever (H A 3)d < 1. Moreover, for all f € L}(RY) and any fixed t > 0,
the following limits hold.:
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distribution to [, f(y)dy L%(B),

@ when H> 1 andd =1: \H-1 fo f(X,)dr converges as A — 0o in
distribution to [, f(y)dy LY(BH),

@ when H < 2 and Hd < 1: \Hd-1 fAt f(X,)dr converges as A — oo in
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Let X; := B; + aB[’ be a mixed fBM.

Theorem (E, L&, 2021+)

X admits a jointly continuous family (L7) ,cgd +>o of occupation densities
whenever (H A 3)d < 1. Moreover, for all f € L}(RY) and any fixed t > 0,
the following /lmlts hold:

o

2]

o

when H < % and d = 1: A2 fOM f(X;)dr converges as A — oo in
distribution to [, f(y)dy L%(B),

when H > % and d = 1: AH-1 fo f(X,)dr converges as A — 0o in
distribution to [, f(y)dy LY(BH),

when H < 2 and Hd < 1: \Hd—1 fAt f(X,)dr converges as A — oo in
probability to 0.

v

In the sequel we shall sketch the proof of existence of the occupation
densities when (H A 3)d < 1 and of the first limit.
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Let (Q, F, F:,P) be a filtered probability space, m > 2 and T > 0 fixed.
We write L™ for L™(Q2, F,P) and, for all s > 0, we write E® for E[-|Fs].
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Let (Q, F, F:,P) be a filtered probability space, m > 2 and T > 0 fixed.
We write L™ for L™(Q2, F,P) and, for all s > 0, we write E® for E[-|Fs].

For0<s<t<T,weassumegiven As; € L™ For0<s<u<t<T,

we further set
(5As,u,t = As,t - As,u - Au,t-
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Theorem (Stochastic Sewing Lemma, K. L&)

Assume that there exist [1,I» > 0 and €1, > 0, such that
B [6As u,e]flim < T [t — s[*F (1)

and
1

10As 0t — E°[0As ue]llim < T2 |t —s[27. (2)
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Theorem (Stochastic Sewing Lemma, K. L&)
Assume that there exist [1,I» > 0 and €1, > 0, such that

IE*[6As uelllLm < Tt = s|*F

and
1

H(SAs,u,t - I['Es[(sfé\s,u,t]HL'” S I_2 ‘t - 5| 2+62'

Then there exist a constant C = C(m, e1,€3) and an adapted process
(At)o<t<T in L™ such that Ay = 0 and satisfying

[Ae — As — As,tHL’” < Clhy|t— S|1+61 4+ Cly ‘t _ S|%+62

and
|ES[A; — As — Ast]l|im < CTy |t — st

Such a process A is unique up to modification.

(1)

()
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Remark: If there exist ¢ > 0 and « € [0,1) such that
|As tllim < Tt — s\%“, and E°[0As ,:] = 0, then the assumptions of the
SSL are fulfilled, and we have

A = As = Asellim S Tt = 5|2+,
whence, by the triangle inequality

IA: — As|lim STt —s|2t.
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|As tllim < Tt — s\%“, and E°[0As ,:] = 0, then the assumptions of the
SSL are fulfilled, and we have

[Ar — As — Ast
whence, by the triangle inequality

lA: — Asl|im S Tt — s|27.

|im S T|E— |2,

Corollary (Stability with respect to the germ)

If A and As; are two germs such that ||As: — As.tl[im < T|t — s\%+€,
and satisfying E°[0As . ¢| = E°[0As ,t] = O, then for all t > 0,

| A: — Al|im S T3,

Proof: apply the above Remark to A — A
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To construct occupation densities, we will appeal to a singular version of
the SSL due to Khoa.
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Assume that, for some a1 € [0,1) and a € [0,1/2), we have
IE*[6As welllim < Tyu™ [t — s|HFe (3)

and )
10As ut — E°[0As u el im < Tou™ 2|t — s|atee, (4)

Then the conclusions of the SSL holds, but the estimates are replaced with

t
HAt - As - As,tHL”’ S Crl (/ U_OC1 dU) |t — S|61
s

t 1/2
+ Cl» (/ u—22 du> |t — 5|2,
S

t
JES[A: — As — As]llin < CTy ( [ du) £ — |,
S

and
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In the sequel we sketch the proof of two statements:
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Then X; := B; + aB!! admits a family of occupation densities
(L2 )aeRd £>0- Moreover, for alla € RY, L2 is in L™ for all m > 2 such that

(HA3)d < (=)

Example: When d =1 and H < % occupation densities exist in L.
Remark: Above we assumed a # 0. In the case a = 0, we would have
X = B: then occupation densities exist only when d = 1, and are in L™
for all m < oc.

Proposition (Scaling limit for d =1, H < 1/2)

Assume that H < 3 and d = 1. Then, for all f € L}(R) and t > 0 fixed,
A2 OM f(X,)dr converges as A — oo in distribution to [, f(y)dy L9(B).
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Let (B¢)e>0 and (W;)¢>0 be two independent standard Brownian motions
in R9 defined on a probability space (2, F,P), and let (F;)>0 be the
filtration defined by

Fr=o({(Bs, Ws), s < t}).

We construct the fBM (Bf),~¢ using the Mandelbrot-van Ness
representation:

t
BH = CH/ [(t M (—r)i_l/z} dw,,

[e.9]

with cy an appropriate constant.
Finally we set X; = B; + aB!. Note that (Xt)e>0 is adapted w.r.t.

(ft)tzo-
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Proof idea for the existence statement Let a € R?. We would like to
construct L7 using the SSL. Formally, L = .[; 92(Xs) ds. What would be a
good germ?
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good germ?

Let g:RY - R bea bounded Borel measurable function. Trivially, a
germ generating A; := fo s)dsis At = f g(Xy) du.

But let us consider instead As7t = fs E*(g(X;)) dr. Then ASJ satisfies the
assumptions of the SSL. Indeed, dA; , ; = fut(IEs[g(Xr)] — EY[g(X})]) dr,
hence ES[5/2\57M] =0, and

t
16As .t ]lLm < / IE*[g(X)] — E*lg(X)]llm dr < 2[|g]loolt — 5.

Moreover, the germ /Z\SJ also generates the process A;. Indeed
Es[A: — As — As¢] =0 and

lA: — As = As ¢l m = < 2|lglloclt — sl.

/ ((X,) — E*[g(X,)]) dr

L m
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Back to the construction of fot 92(Xs) ds: the above motivates to consider
the germ Ag; = jst ES(8,(X,)) du.
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L

Fact: For all s < t, we can write X; = E*(X;) 4+ Zs, with
o E5(X;) ~ N(0,k(s, t)ly), where (s, t) 2 52(HA%),
o Zs: ~N(0,p(s, t)ly), where

p(s,t) = |t — s| + a2cu|t — s]2H > |t — s|2(HA2),

Therefore, with p;(x) := W exp ( HXH ) the heat kernel in RY, we
have

E2(0a(Xu)) = E*(0a(E*(Xu) + Zs.u)) = Pp(s,u)(a — E*(Xu)).

Note that (pp(svu)(a —E*(Xy))) is a martingale.

0<s<t
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Back to the construction of fot 92(Xs) ds: the above motivates to consider
the germ A, ; 1= ]st ES(8,(X,)) du.

L

Fact: For all s < t, we can write X; = E*(X;) 4+ Zs, with
o E5(X;) ~ N(0,k(s, t)ly), where (s, t) 2 52(HA%),
o Zs: ~N(0,p(s, t)ly), where

p(s,t) = |t — s| + a2cu|t — s]2H > |t — s|2(HA2),

Therefore, with p;(x) := W exp ( HXH ) the heat kernel in RY, we
have

E2(0a(Xu)) = E*(0a(E*(Xu) + Zs.u)) = Pp(s,u)(a — E*(Xu)).

Note that (Pp(S,u)(a - Es(Xu)))0§s<t

Let As; = fst Po(s,u)(@ — E°(Xy)) du. We check that A ; satisfies the
assumptions of the SSL.

is a martingale.
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Let As: = [ py(s.uy(@a — E*(Xy)) du. Then

t
5As,u,t = / (pp(s,r)(a - Es(Xr)) - pp(u,r)(a - EU(XF))) dr.

In particular E°[0As ,+] = 0. To bound [[6As . ¢||1m, it suffices to bound
[Po(v,ry(a —EY(X;))|[Lm for any v < r. We use the following:
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Let Ay, = f; Po(s,uy(@ — E5(X,)) du. Then
t
5As,u,t = / (Pp(s,r)(a - Es(Xr)) - pp(u,r)(a - Eu(Xr))) dr.

In particular E°[0As ,+] = 0. To bound [[§As . ¢||m, it suffices to bound
[Po(v,ry(a —EY(X;))|[Lm for any v < r. We use the following:

Lemma
Let k,p >0, X ~N(0,r lyg), and a € R9. Then, for all m > 2,

Ipo(a — X)[|im < C(d) K~ 2m p~2(173),

where C(d) > 0 depends only on d.
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N
Let Ay, = f; Po(s,uy(@ — E5(X,)) du. Then
t
5As,u,t = / (Pp(s,r)(a - Es(Xr)) - pp(u,r)(a - Eu(Xr))) dr.

In particular E°[0As ,+] = 0. To bound [[§As . ¢||m, it suffices to bound
[Po(v,ry(a —EY(X;))|[Lm for any v < r. We use the following:

Lemma
Let k,p >0, X ~N(0,r lyg), and a € R9. Then, for all m > 2,

Ipo(a — X)[|im < C(d) K~ 2m p~2(173),

where C(d) > 0 depends only on d.

Proof: Assume for simplicity m < oo. Then

Bloyta— X)) = [ depu(x)pofa =" < [orliqan 197 e

(B¢
Ce)r? < c<d)p—%“"-”

whence the claim.



By the previous lemma, for all v < r, we obtain

1

_d _d(1_1
1Potv.ry (@ = EX (X))l S (v, r) 25 plv, r)~2(17m),
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By the previous lemma, for all v < r, we obtain

1

_d _d(1_1
1Potv.ry (@ = EX (X))l S (v, r) 25 plv, r)~2(17m),

Recalling that x(v,r) 2 v2(HA2) and p(v,r) 2 |r— v\2(HA%), we get

1

_d 1 _ 1 1
1Po(v, (@ = E“(X:))llem S v w(HA2) |r —v| d(HAz)(1 m)’
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By the previous lemma, for all v < r, we obtain

_d(1_1
1Po(v.r) (@ = EX (X)) lim S k(v r) "2 p(v,r)~2 (7)),

Recalling that x(v,r) 2 v2(HA2) and p(v,r) 2 |r— v\2(HA%), we get

)

1By (@ = EX (X))l < v (HA2) | — y|7e(HA3)(1=7)

so that
t
6niclin = | [ Butenta = BX0) = prun(a - B (X)) e
u Lpm
<5l
where oy ::%(H/\ ) and €1 —f—d(H/\ )(1——) Since we

assumed d (HA 3) < G 1) we have ag € [O, %) and €; > 0. So the SSL
applies, and we set [? := A, € L™,
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By the previous lemma, for all v < r, we obtain

_d(1_1
1Po(v.r) (@ = EX (X)) lim S k(v r) "2 p(v,r)~2 (7)),

Recalling that x(v,r) 2 v2(HA2) and p(v,r) 2 |r— v\2(HA%), we get

1By (@ = EX (X))l < v (HA2) | — y|7e(HA3)(1=7)

)

so that
t
6niclin = | [ Butenta = BX0) = prun(a - B (X)) e
u Lpm
<5l
where oy ::%(H/\ ) and €1 —f—d(H/\ )(1——) Since we

assumed d (HA 3) < G 1), we have a; € [0, 3) and €; > 0. So the SSL
applies, and we set L? := A; € L™. There remains to check the OTF: we

omit the details here.
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Proof of the scaling limit, case d =1, H < 1/2.
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Proof of the scaling limit, case d =1, H < 1/2.
Let X; = B; +aBl. Let f € L}(RY), and t > 0. Want to show

f/kt s) ds AEZ </Rd f(x) dx> L9(B).
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Proof of the scaling limit, case d =1, H < 1/2.
Let X; = B; +aBl. Let f € L}(RY), and t > 0. Want to show

f/kt s) ds AEQ </Rd f(x) dx> L9(B).

Performing the change of variable s = A\u, and by the scaling property of
BM and fBM, we have

\F/M ds—\f/ (Xaw) d

i>ﬁ/ f \FA Bu+a)\H_’BH)> du.
0
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Proof of the scaling limit, case d =1, H < 1/2.
Let X; = B; +aBl. Let f € L}(RY), and t > 0. Want to show

f/kt s) ds AEQ </Rd f(x) dx> L9(B).

Performing the change of variable s = A\u, and by the scaling property of
BM and fBM, we have

f/M ds_f/ (Xow) d
i)ﬁ/of VX (By+ax"18l1) ) du.

By the occupation times formula, and performing the change of variable
= v/Aa, we may rewrite this as

VA o~ f(vVa) L2 (B + a)\H*%) da= /

—00

“+o00
F(b) LP/V (B+ax")db
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We now use the following result, which can be proven via the SSL:
Lemma

Let m € [1,00). There exists > 0 such that

uniformly in A\ > 1, locally uniformly in b € R. Moreover,
‘ LoV (B n ax”—%) HLm is bounded uniformly in A\ > 1 and b € R.

LBV (B + aAH—%) —19B)|| <A

~

Ll'n
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We now use the following result, which can be proven via the SSL:

Lemma
Let m € [1,00). There exists > 0 such that

uniformly in A > 1, locally uniformly in b € R. Moreover,
‘ LoV (B n ax”—%) HLm is bounded uniformly in A\ > 1 and b € R.

Thanks to these estimates, one easily concludes that, for any m € [1, c0),

/Rf(b) LoV (B—i—a/\H’%) db — </R £(b) db) 19(B)

A—00

SAT

Ll'n

LBV (B+ax"1) - 1%8)

in L™. Hence the convergence also holds in distribution. This concludes
the proof.
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There remain many interesting open questions:
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o Fluctuations? (what scaling if [ f(x)dx = 07?)
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@ Correct scaling when d > 2, H < % and dH < 17
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There remain many interesting open questions:

o Fluctuations? (what scaling if [ f(x)dx = 07?)
@ Correct scaling when d > 2, H < % and dH < 17

@ Scaling limits for additive functionals of more complicated processes
(e.g. solutions to SPDEs)?
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