
A statistical point of view on signatures
Conference Pathwise Stochastic Analysis and Applications
CIRM, Marseille

Adeline Fermanian
March 12th 2021

Joint work with

Benoît Cadre
University Rennes 2

Gérard Biau
Sorbonne University

1

Learning from a data stream

Time series prediction

2

Learning from a data stream

Stereo sound recognition

3

Learning from a data stream

Automated medical diagnosis from sensor data

4

Learning from a data stream

Recognition of characters or handwriting

5

Common feature

The predictor is a path X : [a, b]→ Rd.

6

Google “Quick, Draw!” dataset

50 million drawings, 340 classes

7

Data representation

A sample from the class flower

8

Data representation

A sample from the class flower

9

Data representation

A sample from the class flower

x and y coordinates

10

Data representation

A sample from the class flower x and y coordinates

10

Data representation

A sample from the class flower Time reversed

11

Data representation

A sample from the class flower x and y at a different speed

12

The signature will overcome some of these problems.

▷ It is a transformation from a path to a sequence of coefficients.
▷ Independent of time parameterization.
▷ Encodes geometric properties of the path.
▷ No loss of information.

13

The signature will overcome some of these problems.

▷ It is a transformation from a path to a sequence of coefficients.

▷ Independent of time parameterization.
▷ Encodes geometric properties of the path.
▷ No loss of information.

13

The signature will overcome some of these problems.

▷ It is a transformation from a path to a sequence of coefficients.
▷ Independent of time parameterization.

▷ Encodes geometric properties of the path.
▷ No loss of information.

13

The signature will overcome some of these problems.

▷ It is a transformation from a path to a sequence of coefficients.
▷ Independent of time parameterization.
▷ Encodes geometric properties of the path.

▷ No loss of information.

13

The signature will overcome some of these problems.

▷ It is a transformation from a path to a sequence of coefficients.
▷ Independent of time parameterization.
▷ Encodes geometric properties of the path.
▷ No loss of information.

13

Table of contents

1. Definition and basic properties

2. Learning with signatures

3. The signature linear model

4. A generalized signature method for multivariate time series
classification

14

Definition and basic properties

A brief history

Chen’s work for piecewise smooth paths.

 ANNALS OF MATFIEMATICS

 Vol. 65, No. 1, January, 1957
 Printed in U.S.A.

 INTEGRATION OF PATHS, GEOMETRIC INVARIANTS AND A

 GENERALIZED BAKER-HAUSDORFF FORMULA

 BY KUO-TSAI CIREN

 (Received October 17, 1955)

 (Revised May 28, 1956)

 Let a: (al(t), * * , a,(t)), a < t < b, be a path in the affine m-space Rm.

 Starting from the line integral dxi, we define inductively, for p > 2, a

 f dxl* = f (f dx* dxip,.) dai(t)

 where at denotes the portion of a with the parameter ranging from a to t. It is

 observed that dx1, Ad dxip acts as a pth order contravariant tensor associ-

 ated with the path a when Rm undergoes a linear transformation. Some affine
 and euclidean invariants of a are derived from these tensors. Moreover, we asso-
 ciate to the path a the formal power series

 0(ct) = 1 + E* E (f dxi* dxiX) ... Xi

 where XI, Y, Xm are noncommutative indeterminates. Theorem 4.2 asserts
 that log 0(a) is a Lie element, i.e., a formal power series ul + * * * + up + **,
 where each up is a form of degree p generated by X, ...*, Xm through taking
 bracket products and forming linear combinations. We obtain, as a corollary,
 the Baker-Hausdorff formula which states that, if X and Y are noncommutative
 indeterminates, then log (exp X exp Y) is a Lie element.

 Section 1 supplies first some basic knowledge about non-commutative formal
 power series and then some preparatory definitions and formulas for Theorems
 4.1 and 4.2. In Section 2, the iterated integration of paths is defined; and, in

 Section 3, its geometric applications are indicated. Section 4 contains mainly the
 proof of the generalized Baker-Hausdorff formula which is further extended, in
 Section 5, to the case where the affine space Rm is replaced by a differentiable
 mainfold. For those who are only interested in the geometric aspect of this paper,
 Sections 2 and 3 may be easily read without Section 1.

 This paper is a continuation of the author's work in [Chen, (3)] and is some-
 what related to the paper [Chen, (2)]. The proof of Lemma 1.2 is essentially
 Hausdorff's, in which Lemma 1.1 is implicitly used. Its proof, not an obvious one,
 is furnished in this paper. Though borrowing some of Hausdorff's technique,
 Theorem 4.2 is proved in a simpler way and offers a stronger result than the
 Baker-Hausdorff formula.

 163

This content downloaded from 134.157.146.115 on Fri, 12 Jul 2019 13:08:32 UTC
All use subject to https://about.jstor.org/terms

15

A brief history

Lyons’ extension to rough paths.

16

A brief history

Machine learning applications are ↗.

DeepWriterID: An End-to-end Online Text-independent

Writer Identification System

Weixin Yang, Lianwen Jin*, Manfei Liu
College of Electronic and Information Engineering, South China University of Technology, Guangzhou, China

wxy1290@163.com, *lianwen.jin@gmail.com

Abstract—Owing to the rapid growth of touchscreen mobile
terminals and pen-based interfaces, handwriting-based writer
identification systems are attracting increasing attention for
personal authentication and digital forensics. However, most
studies on writer identification have not been satisfying because of
the insufficiency of data and the difficulty of designing good
features for various conditions of handwriting samples. Hence, we
introduce an end-to-end system called DeepWriterID that employs
a deep convolutional neural network (CNN) to address these
problems. A key feature of DeepWriterID is a new method we are
proposing, called DropSegment. It is designed to achieve data
augmentation and to improve the generalized applicability of CNN.
For sufficient feature representation, we further introduce path-
signature feature maps to improve performance. Experiments
were conducted on the NLPR handwriting database. Even though
we only use pen-position information in the pen-down state of the
given handwriting samples, we achieved new state-of-the-art
identification rates of 95.72% for Chinese text and 98.51% for
English text.

Keywords—Online text-independent writer identification;
convolutional neural network; deep learning; DropSegment; path-
signature feature maps.

1. INTRODUCTION

Writer identification is a task of determining a list of
candidate writers according to the degree of similarity between
their handwriting and a sample of unknown authorship [1].
Currently, it is popular owing to the development and
commercialization of touchscreen or pen-enabled electronic
devices such as smartphones, and tablet PCs. Its wide range of
downstream uses include distinguishing forensic trace evidence,
performing mobile bank transactions, and authenticating access
to networks. Since most of these applications are closely related
to the purpose of assuring personal and property security,
handwriting identification merits more attention from academia
and industry.

Identifying the handwriting of a writer is one of the highly
challenging problems in the fields of artificial intelligence and
pattern recognition. Conventionally, handwriting identification
systems follow a sequence of data acquisition, data
preprocessing, feature extraction, and classification [2].
Research into handwriting identification has been focused on
two categories: offline and online. Offline handwritten materials
are considered more general but harder to identify, as they
contain merely scanned image information. In contrast, systems

Figure 1. Illustration of DeepWriterID for online handwriting-based
writer identification.

17

Mathematical setting

• A path X : [0, 1]→ Rd. Notation: Xt.

• Assumption: ∥X∥1-var <∞.
• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0
YtdXt.

18

Mathematical setting

• A path X : [0, 1]→ Rd. Notation: Xt.
• Assumption: ∥X∥1-var <∞.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0
YtdXt.

18

Mathematical setting

• A path X : [0, 1]→ Rd. Notation: Xt.
• Assumption: ∥X∥1-var <∞.
• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0
YtdXt.

18

Mathematical setting

• A path X : [0, 1]→ Rd. Notation: Xt.
• Assumption: ∥X∥1-var <∞.
• Y : [0, 1]→ R a continuous path.
• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0
YtdXt.

18

Mathematical setting

• A path X : [0, 1]→ Rd. Notation: Xt.
• Assumption: ∥X∥1-var <∞.
• Y : [0, 1]→ R a continuous path.
• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0
YtdXt.

Example :
• Xt continuously differentiable:∫ 1

0
YtdXt =

∫ 1

0
YtẊtdt

18

Mathematical setting

• A path X : [0, 1]→ Rd. Notation: Xt.
• Assumption: ∥X∥1-var <∞.
• Y : [0, 1]→ R a continuous path.
• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0
YtdXt.

Example :

• Yt = 1 for all t ∈ [0, 1]:∫ 1

0
YtdXt =

∫ 1

0
dXt = X1 − X0.

18

Iterated integrals

• X : [0, 1]→ Rd, X = (X1, . . . ,Xd).

• For i ∈ {1, . . . , d},

S(i)(X)[0,t] =
∫

0<s<t
dXi

s = Xi
t − Xi

0 → a path!

• For (i, j) ∈ {1, . . . , d}2,

S(i,j)(X)[0,t] =
∫

0<s<t
S(i)(X)[0,s]dXj

s =

∫
0<r<s<t

dXi
rdXj

s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k,

S(i1,...,ik)(X)[0,t] =
∫

0<t1<t2<···<tk<t
dXi1

t1 . . . dXik
tk .

• S(i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik.

19

Iterated integrals

• X : [0, 1]→ Rd, X = (X1, . . . ,Xd).
• For i ∈ {1, . . . , d},

S(i)(X)[0,t] =
∫

0<s<t
dXi

s = Xi
t − Xi

0

→ a path!

• For (i, j) ∈ {1, . . . , d}2,

S(i,j)(X)[0,t] =
∫

0<s<t
S(i)(X)[0,s]dXj

s =

∫
0<r<s<t

dXi
rdXj

s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k,

S(i1,...,ik)(X)[0,t] =
∫

0<t1<t2<···<tk<t
dXi1

t1 . . . dXik
tk .

• S(i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik.

19

Iterated integrals

• X : [0, 1]→ Rd, X = (X1, . . . ,Xd).
• For i ∈ {1, . . . , d},

S(i)(X)[0,t] =
∫

0<s<t
dXi

s = Xi
t − Xi

0 → a path!

• For (i, j) ∈ {1, . . . , d}2,

S(i,j)(X)[0,t] =
∫

0<s<t
S(i)(X)[0,s]dXj

s =

∫
0<r<s<t

dXi
rdXj

s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k,

S(i1,...,ik)(X)[0,t] =
∫

0<t1<t2<···<tk<t
dXi1

t1 . . . dXik
tk .

• S(i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik.

19

Iterated integrals

• X : [0, 1]→ Rd, X = (X1, . . . ,Xd).
• For i ∈ {1, . . . , d},

S(i)(X)[0,t] =
∫

0<s<t
dXi

s = Xi
t − Xi

0 → a path!

• For (i, j) ∈ {1, . . . , d}2,

S(i,j)(X)[0,t] =
∫

0<s<t
S(i)(X)[0,s]dXj

s =

∫
0<r<s<t

dXi
rdXj

s

→ a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k,

S(i1,...,ik)(X)[0,t] =
∫

0<t1<t2<···<tk<t
dXi1

t1 . . . dXik
tk .

• S(i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik.

19

Iterated integrals

• X : [0, 1]→ Rd, X = (X1, . . . ,Xd).
• For i ∈ {1, . . . , d},

S(i)(X)[0,t] =
∫

0<s<t
dXi

s = Xi
t − Xi

0 → a path!

• For (i, j) ∈ {1, . . . , d}2,

S(i,j)(X)[0,t] =
∫

0<s<t
S(i)(X)[0,s]dXj

s =

∫
0<r<s<t

dXi
rdXj

s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k,

S(i1,...,ik)(X)[0,t] =
∫

0<t1<t2<···<tk<t
dXi1

t1 . . . dXik
tk .

• S(i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik.

19

Iterated integrals

• X : [0, 1]→ Rd, X = (X1, . . . ,Xd).
• For i ∈ {1, . . . , d},

S(i)(X)[0,t] =
∫

0<s<t
dXi

s = Xi
t − Xi

0 → a path!

• For (i, j) ∈ {1, . . . , d}2,

S(i,j)(X)[0,t] =
∫

0<s<t
S(i)(X)[0,s]dXj

s =

∫
0<r<s<t

dXi
rdXj

s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k,

S(i1,...,ik)(X)[0,t] =
∫

0<t1<t2<···<tk<t
dXi1

t1 . . . dXik
tk .

• S(i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik.

19

Iterated integrals

• X : [0, 1]→ Rd, X = (X1, . . . ,Xd).
• For i ∈ {1, . . . , d},

S(i)(X)[0,t] =
∫

0<s<t
dXi

s = Xi
t − Xi

0 → a path!

• For (i, j) ∈ {1, . . . , d}2,

S(i,j)(X)[0,t] =
∫

0<s<t
S(i)(X)[0,s]dXj

s =

∫
0<r<s<t

dXi
rdXj

s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k,

S(i1,...,ik)(X)[0,t] =
∫

0<t1<t2<···<tk<t
dXi1

t1 . . . dXik
tk .

• S(i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik.

19

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S(1)(X), . . . , S(d)(X),S(1,1)(X),S(1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)
• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k

S(i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T(Rd),

where

T(Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

20

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S(1)(X), . . . , S(d)(X),S(1,1)(X),S(1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k

S(i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T(Rd),

where

T(Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

20

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S(1)(X), . . . , S(d)(X),S(1,1)(X),S(1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)
• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k

S(i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T(Rd),

where

T(Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

20

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S(1)(X), . . . , S(d)(X),S(1,1)(X),S(1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)
• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k

S(i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T(Rd),

where

T(Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

20

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S(1)(X), . . . , S(d)(X),S(1,1)(X),S(1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)
• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k

S(i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T(Rd),

where

T(Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

20

Example

For Xt = (X1
t ,X2

t),

X1 =
(∫ 1

0 dX1
t
∫ 1

0 dX2
t

)
=
(

X1
1 − X1

0 X2
1 − X2

0

)

X2 =

(∫ 1
0
∫ t

0 dX1
s dX1

t
∫ 1

0
∫ t

0 dX1
s dX2

t∫ 1
0
∫ t

0 dX2
s dX1

t
∫ 1

0
∫ t

0 dX2
s dX2

t

)

21

Example

For Xt = (X1
t ,X2

t),

X1 =
(∫ 1

0 dX1
t
∫ 1

0 dX2
t

)
=
(

X1
1 − X1

0 X2
1 − X2

0

)

X2 =

(∫ 1
0
∫ t

0 dX1
s dX1

t
∫ 1

0
∫ t

0 dX1
s dX2

t∫ 1
0
∫ t

0 dX2
s dX1

t
∫ 1

0
∫ t

0 dX2
s dX2

t

)

21

Example

For Xt = (X1
t ,X2

t),

X1 =
(∫ 1

0 dX1
t
∫ 1

0 dX2
t

)
=
(

X1
1 − X1

0 X2
1 − X2

0

)

X2 =

(∫ 1
0
∫ t

0 dX1
s dX1

t
∫ 1

0
∫ t

0 dX1
s dX2

t∫ 1
0
∫ t

0 dX2
s dX1

t
∫ 1

0
∫ t

0 dX2
s dX2

t

)

21

Truncated signature

• Truncated signature at order m:

Sm(X) = (1,X1,X2, . . . ,Xm).

• Dimension:
sd(m) =

m∑
k=0

dk =
dm+1 − 1

d− 1 .

22

Truncated signature

• Truncated signature at order m:

Sm(X) = (1,X1,X2, . . . ,Xm).

• Dimension:
sd(m) =

m∑
k=0

dk =
dm+1 − 1

d− 1 .

22

Geometric interpretation

23

Important example

Linear path

• X : [0, 1]→ Rd a linear path.

• Xt = X0 + (X1 − X0)t.
• For any I = (i1, . . . , ik),

SI(X) = 1
k!

k∏
j=1

(Xij
1 − Xij

0).

▷ Very useful: in practice, we always deal with piecewise linear paths.
▷ Needed: concatenation operations.

24

Important example

Linear path

• X : [0, 1]→ Rd a linear path.
• Xt = X0 + (X1 − X0)t.

• For any I = (i1, . . . , ik),

SI(X) = 1
k!

k∏
j=1

(Xij
1 − Xij

0).

▷ Very useful: in practice, we always deal with piecewise linear paths.
▷ Needed: concatenation operations.

24

Important example

Linear path

• X : [0, 1]→ Rd a linear path.
• Xt = X0 + (X1 − X0)t.
• For any I = (i1, . . . , ik),

SI(X) = 1
k!

k∏
j=1

(Xij
1 − Xij

0).

▷ Very useful: in practice, we always deal with piecewise linear paths.
▷ Needed: concatenation operations.

24

Important example

Linear path

• X : [0, 1]→ Rd a linear path.
• Xt = X0 + (X1 − X0)t.
• For any I = (i1, . . . , ik),

SI(X) = 1
k!

k∏
j=1

(Xij
1 − Xij

0).

▷ Very useful: in practice, we always deal with piecewise linear paths.
▷ Needed: concatenation operations.

24

Properties 1

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.

• X ∗ Y : [a, c]→ Rd the concatenation.
• Then

S(X ∗ Y) = S(X)⊗ S(Y).

▷ We can compute the signature of piecewise linear paths!
▷ Data stream of p points and truncation at m: O(pdm) operations.
▷ Fast packages and libraries available in C++ and Python.

25

Properties 1

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.
• X ∗ Y : [a, c]→ Rd the concatenation.

• Then
S(X ∗ Y) = S(X)⊗ S(Y).

▷ We can compute the signature of piecewise linear paths!
▷ Data stream of p points and truncation at m: O(pdm) operations.
▷ Fast packages and libraries available in C++ and Python.

25

Properties 1

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.
• X ∗ Y : [a, c]→ Rd the concatenation.
• Then

S(X ∗ Y) = S(X)⊗ S(Y).

▷ We can compute the signature of piecewise linear paths!
▷ Data stream of p points and truncation at m: O(pdm) operations.
▷ Fast packages and libraries available in C++ and Python.

25

Properties 1

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.
• X ∗ Y : [a, c]→ Rd the concatenation.
• Then

S(X ∗ Y) = S(X)⊗ S(Y).

▷ We can compute the signature of piecewise linear paths!
▷ Data stream of p points and truncation at m: O(pdm) operations.
▷ Fast packages and libraries available in C++ and Python.

25

Properties 2

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.

• ψ : [0, 1]→ [0, 1] a reparametrization
• If X̃t = Xψ(t), then

S(X̃) = S(X).

▷ A key advantage of the signature modeling.
▷ Encoding of the geometric properties of paths.

26

Properties 2

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.
• ψ : [0, 1]→ [0, 1] a reparametrization

• If X̃t = Xψ(t), then
S(X̃) = S(X).

▷ A key advantage of the signature modeling.
▷ Encoding of the geometric properties of paths.

26

Properties 2

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.
• ψ : [0, 1]→ [0, 1] a reparametrization
• If X̃t = Xψ(t), then

S(X̃) = S(X).

▷ A key advantage of the signature modeling.
▷ Encoding of the geometric properties of paths.

26

Properties 2

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.
• ψ : [0, 1]→ [0, 1] a reparametrization
• If X̃t = Xψ(t), then

S(X̃) = S(X).

▷ A key advantage of the signature modeling.
▷ Encoding of the geometric properties of paths.

26

Properties 3

Time reversal

• X : [0, 1]→ Rd a path.

• ←−X time-reversal of X: ←−X t = X1−t.

• If 1 = (1, 0, . . . , 0, . . .) ∈ T(Rd), then

S(X)⊗ S(←−X) = 1.

▷ Think “S(X)−1 = S(←−X) ”.
▷ Signature not unique: S(X)⊗ S(←−X) = S(X ∗←−X) = 1.

27

Properties 3

Time reversal

• X : [0, 1]→ Rd a path.
• ←−X time-reversal of X: ←−X t = X1−t.

• If 1 = (1, 0, . . . , 0, . . .) ∈ T(Rd), then

S(X)⊗ S(←−X) = 1.

▷ Think “S(X)−1 = S(←−X) ”.
▷ Signature not unique: S(X)⊗ S(←−X) = S(X ∗←−X) = 1.

27

Properties 3

Time reversal

• X : [0, 1]→ Rd a path.
• ←−X time-reversal of X: ←−X t = X1−t.

• If 1 = (1, 0, . . . , 0, . . .) ∈ T(Rd), then

S(X)⊗ S(←−X) = 1.

▷ Think “S(X)−1 = S(←−X) ”.

▷ Signature not unique: S(X)⊗ S(←−X) = S(X ∗←−X) = 1.

27

Properties 3

Time reversal

• X : [0, 1]→ Rd a path.
• ←−X time-reversal of X: ←−X t = X1−t.

• If 1 = (1, 0, . . . , 0, . . .) ∈ T(Rd), then

S(X)⊗ S(←−X) = 1.

▷ Think “S(X)−1 = S(←−X) ”.
▷ Signature not unique: S(X)⊗ S(←−X) = S(X ∗←−X) = 1.

27

Properties 3

X ←−X

X ∗←−X

28

Properties 4

Tree-like paths
• Definition of an equivalence relation on paths such that

X ∼ Y⇔ S(X) = S(Y).

• X ∼ Y if X ∗←−Y is tree-like.
• S(X) = 1⇔ X tree-like.
• Examples of tree-like paths:

– X ∗←−X ,
– X ∗←−X ∗←−Y ∗ Y,
– X ∗ Y ∗←−Z ∗ Z ∗←−Y ∗←−X .

29

Properties 4

Tree-like paths
• Definition of an equivalence relation on paths such that

X ∼ Y⇔ S(X) = S(Y).

• X ∼ Y if X ∗←−Y is tree-like.

• S(X) = 1⇔ X tree-like.
• Examples of tree-like paths:

– X ∗←−X ,
– X ∗←−X ∗←−Y ∗ Y,
– X ∗ Y ∗←−Z ∗ Z ∗←−Y ∗←−X .

29

Properties 4

Tree-like paths
• Definition of an equivalence relation on paths such that

X ∼ Y⇔ S(X) = S(Y).

• X ∼ Y if X ∗←−Y is tree-like.
• S(X) = 1⇔ X tree-like.

• Examples of tree-like paths:
– X ∗←−X ,
– X ∗←−X ∗←−Y ∗ Y,
– X ∗ Y ∗←−Z ∗ Z ∗←−Y ∗←−X .

29

Properties 4

Tree-like paths
• Definition of an equivalence relation on paths such that

X ∼ Y⇔ S(X) = S(Y).

• X ∼ Y if X ∗←−Y is tree-like.
• S(X) = 1⇔ X tree-like.
• Examples of tree-like paths:

– X ∗←−X ,

– X ∗←−X ∗←−Y ∗ Y,
– X ∗ Y ∗←−Z ∗ Z ∗←−Y ∗←−X .

29

Properties 4

Tree-like paths
• Definition of an equivalence relation on paths such that

X ∼ Y⇔ S(X) = S(Y).

• X ∼ Y if X ∗←−Y is tree-like.
• S(X) = 1⇔ X tree-like.
• Examples of tree-like paths:

– X ∗←−X ,
– X ∗←−X ∗←−Y ∗ Y,

– X ∗ Y ∗←−Z ∗ Z ∗←−Y ∗←−X .

29

Properties 4

Tree-like paths
• Definition of an equivalence relation on paths such that

X ∼ Y⇔ S(X) = S(Y).

• X ∼ Y if X ∗←−Y is tree-like.
• S(X) = 1⇔ X tree-like.
• Examples of tree-like paths:

– X ∗←−X ,
– X ∗←−X ∗←−Y ∗ Y,
– X ∗ Y ∗←−Z ∗ Z ∗←−Y ∗←−X .

29

Properties 4

Uniqueness
• For any X, there exists a unique path of minimal length in its

equivalence class, denoted by X and called the reduced path.

• If X has at least one monotonic coordinate, then S(X) determines X
uniquely, up to translation and reparametrization.

▷ The signature characterizes paths.
▷ Trick: add a dummy monotonic component to X.
▷ Important concept of augmentation.

30

Properties 4

Uniqueness
• For any X, there exists a unique path of minimal length in its

equivalence class, denoted by X and called the reduced path.
• If X has at least one monotonic coordinate, then S(X) determines X

uniquely, up to translation and reparametrization.

▷ The signature characterizes paths.
▷ Trick: add a dummy monotonic component to X.
▷ Important concept of augmentation.

30

Properties 4

Uniqueness
• For any X, there exists a unique path of minimal length in its

equivalence class, denoted by X and called the reduced path.
• If X has at least one monotonic coordinate, then S(X) determines X

uniquely, up to translation and reparametrization.

▷ The signature characterizes paths.
▷ Trick: add a dummy monotonic component to X.
▷ Important concept of augmentation.

30

Can we reconstruct the path from its signature?

▷ Currently a lot of work in this direction;
▷ Efficient algorithm for piecewise linear paths (Chang and Lyons,

2019) → Python implementation.
▷ Applications in signal processing, e.g., sound compression, time

series smoothing...

31

Can we reconstruct the path from its signature?

▷ Currently a lot of work in this direction;
▷ Efficient algorithm for piecewise linear paths (Chang and Lyons,

2019) → Python implementation.
▷ Applications in signal processing, e.g., sound compression, time

series smoothing...

31

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd that are not tree-like
equivalent.

• f : D→ R continuous.
• Then, for every ε > 0, there exists w ∈ T(Rd) such that, for any

X ∈ D, ∣∣f(X)− ⟨w,S(X)⟩∣∣ ≤ ε.
▷ Signature and linear model are happy together!
▷ This raises many interesting statistical issues.

32

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd that are not tree-like
equivalent.

• f : D→ R continuous.

• Then, for every ε > 0, there exists w ∈ T(Rd) such that, for any
X ∈ D, ∣∣f(X)− ⟨w,S(X)⟩∣∣ ≤ ε.

▷ Signature and linear model are happy together!
▷ This raises many interesting statistical issues.

32

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd that are not tree-like
equivalent.

• f : D→ R continuous.
• Then, for every ε > 0, there exists w ∈ T(Rd) such that, for any

X ∈ D, ∣∣f(X)− ⟨w,S(X)⟩∣∣ ≤ ε.

▷ Signature and linear model are happy together!
▷ This raises many interesting statistical issues.

32

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd that are not tree-like
equivalent.

• f : D→ R continuous.
• Then, for every ε > 0, there exists w ∈ T(Rd) such that, for any

X ∈ D, ∣∣f(X)− ⟨w,S(X)⟩∣∣ ≤ ε.
▷ Signature and linear model are happy together!
▷ This raises many interesting statistical issues.

32

Properties 6

Exponential decay of signature coefficients

• X : [0, 1]→ Rd a path.

• Then, for any k ≥ 0, I ⊂ {1, . . . d}k,

|SI(X)| ≤ ∥X∥
k
1-var

k! .

▷ Useful for approximation properties.

33

Properties 6

Exponential decay of signature coefficients

• X : [0, 1]→ Rd a path.
• Then, for any k ≥ 0, I ⊂ {1, . . . d}k,

|SI(X)| ≤ ∥X∥
k
1-var

k! .

▷ Useful for approximation properties.

33

Properties 6

Exponential decay of signature coefficients

• X : [0, 1]→ Rd a path.
• Then, for any k ≥ 0, I ⊂ {1, . . . d}k,

|SI(X)| ≤ ∥X∥
k
1-var

k! .

▷ Useful for approximation properties.

33

Learning with signatures

Supervised learning

• Goal: understand the relationship between X ∈X and Y ∈ Y .

• Regression: Y = R Classification: Y = {1, . . . , q}.
• Data: (X1,Y1), . . . , (Xn,Yn) ∈X × Y , i.i.d. ∼ (X,Y).
• Prediction function: fθ(X) ≈ Y, θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

34

Supervised learning

• Goal: understand the relationship between X ∈X and Y ∈ Y .
• Regression: Y = R Classification: Y = {1, . . . , q}.

• Data: (X1,Y1), . . . , (Xn,Yn) ∈X × Y , i.i.d. ∼ (X,Y).
• Prediction function: fθ(X) ≈ Y, θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

34

Supervised learning

• Goal: understand the relationship between X ∈X and Y ∈ Y .
• Regression: Y = R Classification: Y = {1, . . . , q}.
• Data: (X1,Y1), . . . , (Xn,Yn) ∈X × Y , i.i.d. ∼ (X,Y).

• Prediction function: fθ(X) ≈ Y, θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

34

Supervised learning

• Goal: understand the relationship between X ∈X and Y ∈ Y .
• Regression: Y = R Classification: Y = {1, . . . , q}.
• Data: (X1,Y1), . . . , (Xn,Yn) ∈X × Y , i.i.d. ∼ (X,Y).
• Prediction function: fθ(X) ≈ Y, θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

34

Supervised learning

• Goal: understand the relationship between X ∈X and Y ∈ Y .
• Regression: Y = R Classification: Y = {1, . . . , q}.
• Data: (X1,Y1), . . . , (Xn,Yn) ∈X × Y , i.i.d. ∼ (X,Y).
• Prediction function: fθ(X) ≈ Y, θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

34

Supervised learning

• Loss function ℓ : Y × Y → R+.

• Empirical risk minimization: choose

θ̂ ∈ argmin
θ∈Rp

1
n

n∑
i=1

ℓ(Yi, fθ(Xi)).

• Least squares regression: Y = R and ℓ(y, fθ(x)) = (y− fθ(x))2.
• Binary classification: Y = {0, 1} and ℓ(y, fθ(x)) = 1[fθ(x) ̸=y].

35

Supervised learning

• Loss function ℓ : Y × Y → R+.
• Empirical risk minimization: choose

θ̂ ∈ argmin
θ∈Rp

1
n

n∑
i=1

ℓ(Yi, fθ(Xi)).

• Least squares regression: Y = R and ℓ(y, fθ(x)) = (y− fθ(x))2.
• Binary classification: Y = {0, 1} and ℓ(y, fθ(x)) = 1[fθ(x) ̸=y].

35

Supervised learning

• Loss function ℓ : Y × Y → R+.
• Empirical risk minimization: choose

θ̂ ∈ argmin
θ∈Rp

1
n

n∑
i=1

ℓ(Yi, fθ(Xi)).

• Least squares regression: Y = R and ℓ(y, fθ(x)) = (y− fθ(x))2.

• Binary classification: Y = {0, 1} and ℓ(y, fθ(x)) = 1[fθ(x) ̸=y].

35

Supervised learning

• Loss function ℓ : Y × Y → R+.
• Empirical risk minimization: choose

θ̂ ∈ argmin
θ∈Rp

1
n

n∑
i=1

ℓ(Yi, fθ(Xi)).

• Least squares regression: Y = R and ℓ(y, fθ(x)) = (y− fθ(x))2.
• Binary classification: Y = {0, 1} and ℓ(y, fθ(x)) = 1[fθ(x) ̸=y].

35

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(· · · ρ(T1x))))

▷ L− 1 hidden layers.
▷ Tℓx = Wℓx + bℓ, ℓ = 1, . . . , L.
▷ ρ = activation function (ReLU ρ(x) = max(x, 0)).
▷ σ = output function.

36

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(· · · ρ(T1x))))

▷ L− 1 hidden layers.

▷ Tℓx = Wℓx + bℓ, ℓ = 1, . . . , L.
▷ ρ = activation function (ReLU ρ(x) = max(x, 0)).
▷ σ = output function.

36

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(· · · ρ(T1x))))

▷ L− 1 hidden layers.
▷ Tℓx = Wℓx + bℓ, ℓ = 1, . . . , L.

▷ ρ = activation function (ReLU ρ(x) = max(x, 0)).
▷ σ = output function.

36

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(· · · ρ(T1x))))

▷ L− 1 hidden layers.
▷ Tℓx = Wℓx + bℓ, ℓ = 1, . . . , L.
▷ ρ = activation function (ReLU ρ(x) = max(x, 0)).

▷ σ = output function.

36

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(· · · ρ(T1x))))

▷ L− 1 hidden layers.
▷ Tℓx = Wℓx + bℓ, ℓ = 1, . . . , L.
▷ ρ = activation function (ReLU ρ(x) = max(x, 0)).
▷ σ = output function.

36

Signature + learning algorithm

▷ Yang et al. (2017): skeleton-based human action recognition.
▷ Sequence of positions of human joints → high dimensional signature

coefficients → small dense network.

37

Signature + learning algorithm

▷ Yang et al. (2017): skeleton-based human action recognition.

▷ Sequence of positions of human joints → high dimensional signature
coefficients → small dense network.

37

Signature + learning algorithm

▷ Yang et al. (2017): skeleton-based human action recognition.
▷ Sequence of positions of human joints → high dimensional signature

coefficients → small dense network.

37

Temporal approaches

• Idea: construct a path of signature coefficients.

▷ Lai et al. (2017) and Liu et al. (2017): writer recognition.

38

Temporal approaches

• Idea: construct a path of signature coefficients.

▷ Lai et al. (2017) and Liu et al. (2017): writer recognition.

38

Temporal approaches

• Idea: construct a path of signature coefficients.

▷ Lai et al. (2017) and Liu et al. (2017): writer recognition.

38

Questions

• How should we choose the order of truncation?

• How does it perform compared to traditional functional linear
models ?

• Could we find a canonical signature pipeline that would be a
domain-agnostic starting point for practitioners?

39

Questions

• How should we choose the order of truncation?
• How does it perform compared to traditional functional linear

models ?

• Could we find a canonical signature pipeline that would be a
domain-agnostic starting point for practitioners?

39

Questions

• How should we choose the order of truncation?
• How does it perform compared to traditional functional linear

models ?
• Could we find a canonical signature pipeline that would be a

domain-agnostic starting point for practitioners?

39

The signature linear model

Regression model on the signature

• X : [0, 1]→ Rd random path, Y ∈ R random variable.

• Assumption: there exists m∗ ∈ N, β∗ ∈ Rsd(m∗) such that

E[Y|X] = ⟨β∗,Sm∗
(X)⟩, and Var(Y|X) ≤ σ2 <∞.

• Goal: estimate m∗ and β∗.

40

Regression model on the signature

• X : [0, 1]→ Rd random path, Y ∈ R random variable.
• Assumption: there exists m∗ ∈ N, β∗ ∈ Rsd(m∗) such that

E[Y|X] = ⟨β∗,Sm∗
(X)⟩, and Var(Y|X) ≤ σ2 <∞.

• Goal: estimate m∗ and β∗.

40

Regression model on the signature

• X : [0, 1]→ Rd random path, Y ∈ R random variable.
• Assumption: there exists m∗ ∈ N, β∗ ∈ Rsd(m∗) such that

E[Y|X] = ⟨β∗,Sm∗
(X)⟩, and Var(Y|X) ≤ σ2 <∞.

• Goal: estimate m∗ and β∗.

40

Regression model on the signature

→ m∗ is a key quantity! Recall that

sd(m) =
m∑

k=0
dk =

dm+1 − 1
d− 1 .

Typical values of sd(m).

d = 2 d = 3 d = 6

m = 1 2 3 6
m = 2 6 12 42
m = 5 62 363 9330
m = 7 254 3279 335922

41

Regression model on the signature

→ m∗ is a key quantity! Recall that

sd(m) =
m∑

k=0
dk =

dm+1 − 1
d− 1 .

Typical values of sd(m).

d = 2 d = 3 d = 6

m = 1 2 3 6
m = 2 6 12 42
m = 5 62 363 9330
m = 7 254 3279 335922

41

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

• For any m ∈ N, α > 0,

Bm,α =
{
β ∈ Rsd(m) : ∥β∥2 ≤ α

}
.

• For any m ∈ N, β ∈ Bm,α,

Rm,n(β) =
1
n

n∑
i=1

(
Yi − ⟨β,Sm(Xi)⟩

)2
.

• For any m ∈ N,
L̂n(m) = inf

β∈Bm,α

Rm,n(β).

42

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.
• For any m ∈ N, α > 0,

Bm,α =
{
β ∈ Rsd(m) : ∥β∥2 ≤ α

}
.

• For any m ∈ N, β ∈ Bm,α,

Rm,n(β) =
1
n

n∑
i=1

(
Yi − ⟨β,Sm(Xi)⟩

)2
.

• For any m ∈ N,
L̂n(m) = inf

β∈Bm,α

Rm,n(β).

42

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.
• For any m ∈ N, α > 0,

Bm,α =
{
β ∈ Rsd(m) : ∥β∥2 ≤ α

}
.

• For any m ∈ N, β ∈ Bm,α,

Rm,n(β) =
1
n

n∑
i=1

(
Yi − ⟨β,Sm(Xi)⟩

)2
.

• For any m ∈ N,
L̂n(m) = inf

β∈Bm,α

Rm,n(β).

42

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.
• For any m ∈ N, α > 0,

Bm,α =
{
β ∈ Rsd(m) : ∥β∥2 ≤ α

}
.

• For any m ∈ N, β ∈ Bm,α,

Rm,n(β) =
1
n

n∑
i=1

(
Yi − ⟨β,Sm(Xi)⟩

)2
.

• For any m ∈ N,
L̂n(m) = inf

β∈Bm,α

Rm,n(β).

42

Estimation of m∗

Estimator:
m̂ = min

(
argmin

m

(
L̂n(m) + penn(m)

))
.

43

Result

Additional assumptions:

(Hα) β∗ ∈ Bm∗,α.

(HK) There exists KY > 0 and KX > 0 such that almost surely

|Y| ≤ KY and ∥X∥1-var ≤ KX.

44

Result

Theorem

Let Kpen > 0, 0 < ρ < 1
2 , and

penn(m) = Kpenn−ρ
√

sd(m).

Under the assumptions (Hα) and (HK), for any n ≥ n0,

P (m̂ ̸= m∗) ≤ C1 exp
(
−C2n1−2ρ) ,

where n0, C1 and C2 are explicit constants.

Corollary
m̂ converges almost surely towards m∗.

45

Result

Theorem

Let Kpen > 0, 0 < ρ < 1
2 , and

penn(m) = Kpenn−ρ
√

sd(m).

Under the assumptions (Hα) and (HK), for any n ≥ n0,

P (m̂ ̸= m∗) ≤ C1 exp
(
−C2n1−2ρ) ,

where n0, C1 and C2 are explicit constants.

Corollary
m̂ converges almost surely towards m∗.

45

Result

We can then estimate β∗ by

β̂ = argmin
β∈Bm̂,α

Rm̂,n(β),

and show that

E
(〈
β̂,Sm̂(X)

〉
−
〈
β∗,Sm∗

(X)
〉)2

= O
(1√

n
)
.

46

Result

We can then estimate β∗ by

β̂ = argmin
β∈Bm̂,α

Rm̂,n(β),

and show that

E
(〈
β̂,Sm̂(X)

〉
−
〈
β∗,Sm∗

(X)
〉)2

= O
(1√

n
)
.

46

Functional linear model

• In the case d = 1,

Y = α+

∫ 1

0
X(t)β(t)dt + ε,

• Basis expansion:

β(t) =
K∑

k=1
bkϕk(t), Xi(t) =

K∑
k=1

cikϕk(t),

• Back to the multivariate case: estimate the bks.
▷ Choice for ϕ1, . . . , ϕK? Splines, monomials, Fourier basis... or

functional principal components of the Xis.
▷ If d > 2? Treat each coordinate independently.

47

Functional linear model

• In the case d = 1,

Y = α+

∫ 1

0
X(t)β(t)dt + ε,

• Basis expansion:

β(t) =
K∑

k=1
bkϕk(t), Xi(t) =

K∑
k=1

cikϕk(t),

• Back to the multivariate case: estimate the bks.
▷ Choice for ϕ1, . . . , ϕK? Splines, monomials, Fourier basis... or

functional principal components of the Xis.
▷ If d > 2? Treat each coordinate independently.

47

Functional linear model

• In the case d = 1,

Y = α+

∫ 1

0
X(t)β(t)dt + ε,

• Basis expansion:

β(t) =
K∑

k=1
bkϕk(t), Xi(t) =

K∑
k=1

cikϕk(t),

• Back to the multivariate case: estimate the bks.

▷ Choice for ϕ1, . . . , ϕK? Splines, monomials, Fourier basis... or
functional principal components of the Xis.

▷ If d > 2? Treat each coordinate independently.

47

Functional linear model

• In the case d = 1,

Y = α+

∫ 1

0
X(t)β(t)dt + ε,

• Basis expansion:

β(t) =
K∑

k=1
bkϕk(t), Xi(t) =

K∑
k=1

cikϕk(t),

• Back to the multivariate case: estimate the bks.
▷ Choice for ϕ1, . . . , ϕK? Splines, monomials, Fourier basis... or

functional principal components of the Xis.

▷ If d > 2? Treat each coordinate independently.

47

Functional linear model

• In the case d = 1,

Y = α+

∫ 1

0
X(t)β(t)dt + ε,

• Basis expansion:

β(t) =
K∑

k=1
bkϕk(t), Xi(t) =

K∑
k=1

cikϕk(t),

• Back to the multivariate case: estimate the bks.
▷ Choice for ϕ1, . . . , ϕK? Splines, monomials, Fourier basis... or

functional principal components of the Xis.
▷ If d > 2? Treat each coordinate independently.

47

Dimension study

• Gaussian processes covariates: or any t ∈ [0, 1], 1 ≤ i ≤ n,
1 ≤ k ≤ d,

Xk
i,t = αk

i t + ξk
i,t, 1 ≤ k ≤ d, t ∈ [0, 1],

• ξk
i is a Gaussian process with exponential covariance matrix.

• Response is the norm of the trend: Yi = ∥αi∥.

48

Dimension study

• Gaussian processes covariates: or any t ∈ [0, 1], 1 ≤ i ≤ n,
1 ≤ k ≤ d,

Xk
i,t = αk

i t + ξk
i,t, 1 ≤ k ≤ d, t ∈ [0, 1],

• ξk
i is a Gaussian process with exponential covariance matrix.

• Response is the norm of the trend: Yi = ∥αi∥.

48

Dimension study

• Gaussian processes covariates: or any t ∈ [0, 1], 1 ≤ i ≤ n,
1 ≤ k ≤ d,

Xk
i,t = αk

i t + ξk
i,t, 1 ≤ k ≤ d, t ∈ [0, 1],

• ξk
i is a Gaussian process with exponential covariance matrix.

• Response is the norm of the trend: Yi = ∥αi∥.

48

Dimension study

• Gaussian processes covariates: or any t ∈ [0, 1], 1 ≤ i ≤ n,
1 ≤ k ≤ d,

Xk
i,t = αk

i t + ξk
i,t, 1 ≤ k ≤ d, t ∈ [0, 1],

• ξk
i is a Gaussian process with exponential covariance matrix.

• Response is the norm of the trend: Yi = ∥αi∥.

48

Dimension study

49

Electricity consumption

• Electricity consumption of 370 clients, recorded every 15min from
2011 to 2014.

• Observe a subset of clients during a week and predict the
consumption peak of the following week: maximal consumption
summed over all clients.

• Vary the size of the subset: the more clients the more information!

50

Electricity consumption

• Electricity consumption of 370 clients, recorded every 15min from
2011 to 2014.

• Observe a subset of clients during a week and predict the
consumption peak of the following week: maximal consumption
summed over all clients.

• Vary the size of the subset: the more clients the more information!

50

Electricity consumption

• Electricity consumption of 370 clients, recorded every 15min from
2011 to 2014.

• Observe a subset of clients during a week and predict the
consumption peak of the following week: maximal consumption
summed over all clients.

• Vary the size of the subset: the more clients the more information!

50

Electricity consumption

• Electricity consumption of 370 clients, recorded every 15min from
2011 to 2014.

• Observe a subset of clients during a week and predict the
consumption peak of the following week: maximal consumption
summed over all clients.

• Vary the size of the subset: the more clients the more information!

50

Electricity consumption

51

A generalized signature method
for multivariate time series
classification

Joint work with

James Morrill
University of

Oxford

Patrick Kidger
University of

Oxford

Terry Lyons
University of

Oxford

52

Overview

• Goal: systematic comparison of the different variations of the
signature method.

• Empirical study over 26 datasets of time series classification.
• Define a generalised signature method as a framework to capture all

these variations.
• Give practitioners some simple, domain-agnostic guidelines for a first

signature algorithm.

53

Overview

• Goal: systematic comparison of the different variations of the
signature method.

• Empirical study over 26 datasets of time series classification.

• Define a generalised signature method as a framework to capture all
these variations.

• Give practitioners some simple, domain-agnostic guidelines for a first
signature algorithm.

53

Overview

• Goal: systematic comparison of the different variations of the
signature method.

• Empirical study over 26 datasets of time series classification.
• Define a generalised signature method as a framework to capture all

these variations.

• Give practitioners some simple, domain-agnostic guidelines for a first
signature algorithm.

53

Overview

• Goal: systematic comparison of the different variations of the
signature method.

• Empirical study over 26 datasets of time series classification.
• Define a generalised signature method as a framework to capture all

these variations.
• Give practitioners some simple, domain-agnostic guidelines for a first

signature algorithm.

53

Framework

• Input: a sequence x ∈ S(Rd), where

S(Rd) = {(x1, . . . , xn) | xi ∈ Rd, n ∈ N}.

Racketsports dataset A sample x with d = 6, n = 30

54

Framework

• Input: a sequence x ∈ S(Rd), where

S(Rd) = {(x1, . . . , xn) | xi ∈ Rd, n ∈ N}.

• Output: a label y ∈ {1, . . . , q}.

54

Framework

▷ For some e, p ∈ N, an augmentation is a map

ϕ = (ϕ1, . . . , ϕp) : S(Rd)→ S(Re)p
.

▷ For some q ∈ N, a window is a map

W : S(Re)→ S(Re)w
.

▷ Signature or logsignature transform: Sm.
▷ Rescaling operation ρpost or ρpre.

Feature set
yi,j = (ρpost ◦ Sm ◦ ρpre ◦Wj ◦ ϕi)(x).

55

Framework

▷ For some e, p ∈ N, an augmentation is a map

ϕ = (ϕ1, . . . , ϕp) : S(Rd)→ S(Re)p
.

▷ For some q ∈ N, a window is a map

W : S(Re)→ S(Re)w
.

▷ Signature or logsignature transform: Sm.
▷ Rescaling operation ρpost or ρpre.

Feature set
yi,j = (ρpost ◦ Sm ◦ ρpre ◦Wj ◦ ϕi)(x).

56

Augmentations

• Time augmentation

ϕt(x) =
(
(t1, x1), . . . , (tn, xn)

)
∈ S(Rd+1).

Sample x ∈ S(R6) Augmented path ϕ(x) ∈ S(R7)

▷ Sensitivity to parametrization and ensures signature uniqueness.

57

Augmentations

• Time augmentation

ϕt(x) =
(
(t1, x1), . . . , (tn, xn)

)
∈ S(Rd+1).

Sample x ∈ S(R6) Augmented path ϕ(x) ∈ S(R7)

▷ Sensitivity to parametrization and ensures signature uniqueness.

57

Augmentations

• Time augmentation

ϕt(x) =
(
(t1, x1), . . . , (tn, xn)

)
∈ S(Rd+1).

Sample x ∈ S(R6) Augmented path ϕ(x) ∈ S(R7)

▷ Sensitivity to parametrization and ensures signature uniqueness.

57

Augmentations

• Lead-lag augmentation

ϕ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xn, xn)) ∈ S(R2d).

Sample x ∈ S(R6) Augmented path ϕ(x) ∈ S(R12)

▷ Captures the quadratic variation of a process.

58

Augmentations

• Lead-lag augmentation

ϕ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xn, xn)) ∈ S(R2d).

Sample x ∈ S(R6) Augmented path ϕ(x) ∈ S(R12)

▷ Captures the quadratic variation of a process.

58

Augmentations

• Lead-lag augmentation

ϕ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xn, xn)) ∈ S(R2d).

Sample x ∈ S(R6) Augmented path ϕ(x) ∈ S(R12)

▷ Captures the quadratic variation of a process.

58

Augmentations

• Basepoint augmentation

ϕ(x) = (0, x1, . . . , xn) ∈ S(Rd).

• Invisibility-reset augmentation

ϕ(x) =
(
(1, x1), . . . , (1, xn−1), (1, xn), (0, xn), (0, 0)

)
∈ S(Rd+1).

▷ Sensitivity to translations.

59

Augmentations

• Basepoint augmentation

ϕ(x) = (0, x1, . . . , xn) ∈ S(Rd).

• Invisibility-reset augmentation

ϕ(x) =
(
(1, x1), . . . , (1, xn−1), (1, xn), (0, xn), (0, 0)

)
∈ S(Rd+1).

▷ Sensitivity to translations.

59

Augmentations

• Basepoint augmentation

ϕ(x) = (0, x1, . . . , xn) ∈ S(Rd).

• Invisibility-reset augmentation

ϕ(x) =
(
(1, x1), . . . , (1, xn−1), (1, xn), (0, xn), (0, 0)

)
∈ S(Rd+1).

▷ Sensitivity to translations.

59

Framework

▷ For some e, p ∈ N, an augmentation is a map

ϕ = (ϕ1, . . . , ϕp) : S(Rd)→ S(Re)p
.

▷ For some q ∈ N, a window is a map

W : S(Re)→ S(Re)w
.

▷ Signature or logsignature transform: Sm.
▷ Rescaling operation ρpost or ρpre.

Feature set
yi,j = (ρpost ◦ Sm ◦ ρpre ◦Wj ◦ ϕi)(x).

60

Windows

• Global window
W(x) = (x) ∈ S(Re),

61

Windows

• Sliding window

W(x) = (x1,ℓ, xl+1,l+ℓ, x2l+1,2l+ℓ, . . .) ∈ S(S(Re)),

62

Windows

• Expanding window

W(x) = (x1,ℓ, x1,l+ℓ, x1,2l+ℓ, . . .) ∈ S(S(Re)).

63

Windows

• Dyadic window

W(x) = (W1(x), . . . ,Wq(x)) ∈ S(S(Re))q
.

64

Framework

▷ For some e, p ∈ N, an augmentation is a map

ϕ = (ϕ1, . . . , ϕp) : S(Rd)→ S(Re)p
.

▷ For some q ∈ N, a window is a map

W : S(Re)→ S(Re)w
.

▷ Signature or logsignature transform: Sm.
▷ Rescaling operation ρpost or ρpre.

Feature set
yi,j = (ρpost ◦ Sm ◦ ρpre ◦Wj ◦ ϕi)(x).

65

Framework

• Signature transform

Sm(x) = (1,X1,X2, . . . ,Xm).

• Logsignature transform log(Sm(x)), where for any a ∈ T((Rd)),

log(a) =
∑
k≥0

(−1)k

k (1− a)⊗k.

▷ Same information and logsignature less dimensional but no linear
approximation property.

66

Framework

• Signature transform

Sm(x) = (1,X1,X2, . . . ,Xm).

• Logsignature transform log(Sm(x)), where for any a ∈ T((Rd)),

log(a) =
∑
k≥0

(−1)k

k (1− a)⊗k.

▷ Same information and logsignature less dimensional but no linear
approximation property.

66

Framework

• Signature transform

Sm(x) = (1,X1,X2, . . . ,Xm).

• Logsignature transform log(Sm(x)), where for any a ∈ T((Rd)),

log(a) =
∑
k≥0

(−1)k

k (1− a)⊗k.

▷ Same information and logsignature less dimensional but no linear
approximation property.

66

Signature versus logsignature

Table 1: Typical dimensions of Sm(x) and log(Sm(x)).

d = 2 d = 3 d = 6

m = 1 2 / 2 3 / 3 6 / 6
m = 2 6 / 3 12 / 6 42 / 21
m = 5 62 / 14 363 / 80 9330 / 1960
m = 7 254 / 41 3279 / 508 335922 / 49685

67

Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

• Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ ϕt)(x).

• Vary each group of options with regards to this baseline.
• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.

68

Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

• Definition of a baseline:

time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ ϕt)(x).

• Vary each group of options with regards to this baseline.
• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.

68

Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

• Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ ϕt)(x).

• Vary each group of options with regards to this baseline.
• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.

68

Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

• Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ ϕt)(x).

• Vary each group of options with regards to this baseline.
• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.

68

Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

• Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ ϕt)(x).

• Vary each group of options with regards to this baseline.

• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.

68

Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

• Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ ϕt)(x).

• Vary each group of options with regards to this baseline.
• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.

68

Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

• Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ ϕt)(x).

• Vary each group of options with regards to this baseline.
• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.

68

Results

▷ Windows:

69

Results

▷ Invariance-removing augmentations:

69

Results

▷ Other augmentations:

69

Results

▷ Signature versus logsignature transform:
Signature Logsignature

Average ranks 1.25 1.75
p-value 0.01

69

Canonical signature pipeline

70

Canonical signature pipeline

Implement this pipeline on the 30 datasets from the UEA archive, with a
random forest classifier, and compare it to benchmark classifiers.

▷ Competitive with ensemble methods (MUSE and HIVE COTE) and
deep neural networks (MLCN and TapNet).

71

Canonical signature pipeline

Implement this pipeline on the 30 datasets from the UEA archive, with a
random forest classifier, and compare it to benchmark classifiers.

▷ Competitive with ensemble methods (MUSE and HIVE COTE) and
deep neural networks (MLCN and TapNet).

71

Conclusion

• Signatures are a flexible tool.

• The combination “signature + generic algorithm” ≈ state-of-the-art.
• Few computing resources and no domain-specific knowledge.
• A lot of open questions and potential applications.

72

Conclusion

• Signatures are a flexible tool.
• The combination “signature + generic algorithm” ≈ state-of-the-art.

• Few computing resources and no domain-specific knowledge.
• A lot of open questions and potential applications.

72

Conclusion

• Signatures are a flexible tool.
• The combination “signature + generic algorithm” ≈ state-of-the-art.
• Few computing resources and no domain-specific knowledge.

• A lot of open questions and potential applications.

72

Conclusion

• Signatures are a flexible tool.
• The combination “signature + generic algorithm” ≈ state-of-the-art.
• Few computing resources and no domain-specific knowledge.
• A lot of open questions and potential applications.

72

Thank you!

72

	Definition and basic properties
	Learning with signatures
	The signature linear model
	A generalized signature method for multivariate time series classification

