A statistical point of view on signatures

Conference Pathwise Stochastic Analysis and Applications CIRM, Marseille

Adeline Fermanian
March 12th 2021

Joint work with

Benoît Cadre
University Rennes 2

Gérard Biau
Sorbonne University

Learning from a data stream

First Trust NASDAQ Clean Edge US Liquid Series (QCLN) $21.20+0.05$
8 Apr 2019

Time series prediction

Learning from a data stream

Stereo sound recognition

Learning from a data stream

Automated medical diagnosis from sensor data

Learning from a data stream

$$
\begin{aligned}
& \text { 8 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 而○に\& }
\end{aligned}
$$

Recognition of characters or handwriting

Common feature

The predictor is a path $X:[a, b] \rightarrow \mathbb{R}^{d}$.

Google "Quick, Draw!" dataset

50 million drawings, 340 classes

Data representation

A sample from the class flower

Data representation

A sample from the class flower

Data representation

A sample from the class flower

Data representation

A sample from the class flower

x and y coordinates

Data representation

A sample from the class flower

Time reversed

Data representation

A sample from the class flower

x and y at a different speed

The signature will overcome some of these problems.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.
\triangleright Encodes geometric properties of the path.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.
\triangleright Encodes geometric properties of the path.
\triangleright No loss of information.

Table of contents

1. Definition and basic properties
2. Learning with signatures
3. The signature linear model
4. A generalized signature method for multivariate time series classification

Definition and basic properties

A brief history

 es, No. 1, January, Prinete in U.S.A.

INTEGRATION OF PATHS, GEOMETRIC INVARIANTS AND A GENERALIZED BAKER-HAUSDORFF FORMULA

By Kuo-Tsal Cien

Received October 17, 1955)

(Revised May 28, 1956)

Let $\alpha:\left\langle\alpha_{1}(t), \cdots, \alpha_{m}(t)\right\rangle, a \leqq t \leqq b$, be a path in the affine m-space R^{m}. Starting from the line integral $\int_{\alpha} d x_{i}$, we define inductively, for $p \geqq 2$,

$$
\int_{\alpha} d x_{i_{1}} \cdots d x_{i_{p}}=\int_{a}^{\delta}\left(\int_{\alpha} d x_{i_{1}} \cdots d x_{i_{p-1}}\right) d \alpha_{i_{p}}(t)
$$

where α^{\prime} denotes the portion of α with the parameter ranging from a to t. It is observed that $\int_{a} d x_{i_{1}} \cdots d x_{i_{p}}$ acts as a $p^{\text {tb }}$ order contravariant tensor associated with the path α when $R^{* \pi}$ undergoes a linear transformation. Some affine and euclidean invariants of α are derived from these tensors. Moreover, we associate to the path α the formal power series

$$
\theta(\alpha)=1+\sum_{p=1}^{\infty} \sum\left(\int_{\alpha} d x_{i_{1}} \cdots d x_{i_{p}}\right) X_{i_{1}} \cdots X_{i_{p}}
$$

where X_{1}, \cdots, X_{m} are noncommutative indeterminates. Theorem 4.2 asserts that $\log \theta(\alpha)$ is a Lie element, i.e., a formal power series $u_{1}+\cdots+u_{p}+\cdots$, where each u_{p} is a form of degree p generated by X_{1}, \cdots, X_{m} through taking bracket products and forming linear combinations. We obtain, as a corollary, the Baker-Hausdorff formula which states that, if X and Y are noncommutative indeterminates, then $\log (\exp X \cdot \exp Y)$ is a Lie element.
Section 1 supplies first some basic knowledge about non-commutative formal power series and then some preparatory definitions and formulas for Theorems 4.1 and 4.2. In Section 2, the iterated integration of paths is defined; and, in Section 3, its geometric applications are indicated. Section 4 contains mainly the proof of the generalized Baker-Hausdorff formula which is further extended, in Section 5, to the case where the affine space R^{ω} is replaced by a differentiable mainfold. For those who are only interested in the geometric aspect of this paper, Sections 2 and 3 may be easily read without Section 1.
This paper is a continuation of the author's work in [Chen, (3)] and is somewhat related to the paper [Chen, (2)]. The proof of Lemma 1.2 is essentially Hausdorff's, in which Lemma 1.1 is implicitly used. Its proof, not an obvious one, is furnished in this paper. Though borrowing some of Hausdorff's technique, Theorem 4.2 is proved in a simpler way and offers a stronger result than the Baker-Hausdorff formula.

A brief history

Lyons' extension to rough paths.

A brief history

DeepWriterID: An End-to-end Online Text-independent Writer Identification System

Weixin Yang, Lianwen Jin', Manfei Liu
College of Electronic and Information Engineering, South China University of Technology, Guangzhou, China wxy1290@163.com, *lianwen.jin@gmail.com

Abstract-Owing to the rapid growth of touchscreen mobile terminals and pen-based interfaces, handwriting-based writer identification systems are attracting increasing attention for studies on writer identification have not been satisfying because of the insufficiency of data and the difficulty of designing good features for various conditions of handwriting samples. Hence, we introduce an end-to-end system called DeepWriterID that employs a deep convolutional neural network (CNN) to address these
problems. A key feature of DeepWriterID is a new method we are proposing, called DropSeqment. It is designed to achieve data augmentation and to improve the generalized applicability of CNN. For sufficient feature representation, we further introduce pathsignature feature maps to improve performance. Experiments were conducted on the NLPR handwriting database. Even though we only use pen-position information in the pen-down state of the
given handwriting samples, we achieved new state-ff-the-art given handwriting samples, we achieved new state-of-the-art
identification rates of 95.72% for Chinese text and 98.51% for English text.

Keywords-Ontine text-independent writer identification; convolutional neural network; deep learning: DropSegment; pathsignature feuture maps.

1. Introduction

Writer identification is a task of determining a list of candidate writers according to the degree of similarity between their handwriting and a sample of unknown authorship [1]. Currently, it is popular owing to the development and devices such as smartphones, and tablet PCs. It wide range of downstream uses include distinguishing forensic trace evidence, performing mobile bank transactions, and authenticating access to networks. Since most of these applications are closely related to the purpose of assuring personal and property security, handwriting identification merits more attention from academia and industry.

Identifying the handwriting of a writer is one of the highly challenging problems in the fields of artificial intelligence and pattern recognition. Conventionally, handwriting identification systems follow a sequence of data acquisition, data preprocessing, feature extraction, and classification [2]. Research into handwriting identification has been focused on two categories: offline and online. Offline handwnitten materials
are considered more general but harder to identify, as they contain merely scanned image information. In contrast systems

Figure 1. Illustration of DeepWriterID for online handwriting-based writer identification.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.
- Riemann-Stieljes integral of Y against X is well-defined. Notation:

$$
\int_{0}^{1} Y_{t} d X_{t}
$$

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.
- Riemann-Stieljes integral of Y against X is well-defined. Notation:

$$
\int_{0}^{1} Y_{t} d X_{t}
$$

Example :

- X_{t} continuously differentiable:

$$
\int_{0}^{1} Y_{t} d X_{t}=\int_{0}^{1} Y_{t} \dot{X}_{t} d t
$$

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.
- Riemann-Stieljes integral of Y against X is well-defined. Notation:

$$
\int_{0}^{1} Y_{t} d X_{t}
$$

Example :

- $Y_{t}=1$ for all $t \in[0,1]:$

$$
\int_{0}^{1} Y_{t} d X_{t}=\int_{0}^{1} d X_{t}=X_{1}-X_{0}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{(i)}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{(i)}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }!
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{(i)}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }!
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{(i, j)}(X)_{[0, t]}=\int_{0<s<t} S^{(i)}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{(i)}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }!
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{(i, j)}(X)_{[0, t]}=\int_{0<s<t} S^{(i)}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path! }
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{(i)}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }!
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{(i, j)}(X)_{[0, t]}=\int_{0<s<t} S^{(i)}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

- Recursively, for $\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, d\}^{k}$,

$$
S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0, t]}=\int_{0<t_{1}<t_{2}<\cdots<t_{k}<t} d X_{t_{1}}^{i_{1}} \ldots d X_{t_{k}}^{i_{k}} .
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{(i)}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }!
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{(i, j)}(X)_{[0, t]}=\int_{0<s<t} S^{(i)}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

- Recursively, for $\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, d\}^{k}$,

$$
S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0, t]}=\int_{0<t_{1}<t_{2}<\cdots<t_{k}<t} d X_{t_{1}}^{i_{1}} \ldots d X_{t_{k}}^{i_{k}} .
$$

- $S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0,1]}$ is the k-fold iterated integral of X along i_{1}, \ldots, i_{k}.

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{(1)}(X), \ldots, S^{(d)}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{(1)}(X), \ldots, S^{(d)}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{(1)}(X), \ldots, S^{(d)}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
\mathbf{X}^{\mathbf{k}}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{(1)}(X), \ldots, S^{(d)}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
\mathbf{X}^{\mathbf{k}}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

- Signature:

$$
S(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{k}}, \ldots\right) \in T\left(\mathbb{R}^{d}\right)
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{(1)}(X), \ldots, S^{(d)}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
\mathbf{X}^{\mathbf{k}}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

- Signature:

$$
S(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{k}}, \ldots\right) \in T\left(\mathbb{R}^{d}\right)
$$

where

$$
T\left(\mathbb{R}^{d}\right)=1 \oplus \mathbb{R}^{d} \oplus\left(\mathbb{R}^{d}\right)^{\otimes 2} \oplus \cdots \oplus\left(\mathbb{R}^{d}\right)^{\otimes k} \oplus \cdots
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\mathbf{X}^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right)
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\begin{gathered}
\mathbf{X}^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right) \\
\mathbf{X}^{2}=\left(\begin{array}{ll}
\int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{2} \\
\int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{2}
\end{array}\right)
\end{gathered}
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\begin{gathered}
\mathbf{x}^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right) \\
\mathbf{X}^{2}=\left(\begin{array}{ll}
\int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{2} \\
\int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{2}
\end{array}\right)
\end{gathered}
$$

Truncated signature

- Truncated signature at order m:

$$
S^{m}(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{m}}\right)
$$

Truncated signature

- Truncated signature at order m :

$$
S^{m}(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{m}\right)
$$

- Dimension:

$$
s_{d}(m)=\sum_{k=0}^{m} d^{k}=\frac{d^{m+1}-1}{d-1}
$$

Geometric interpretation

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+\left(X_{1}-X_{0}\right)$ t.

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+\left(X_{1}-X_{0}\right) t$.
- For any $I=\left(i_{1}, \ldots, i_{k}\right)$,

$$
S^{\prime}(X)=\frac{1}{k!} \prod_{j=1}^{k}\left(X_{1}^{i j}-X_{0}^{j}\right)
$$

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+\left(X_{1}-X_{0}\right) t$.
- For any $I=\left(i_{1}, \ldots, i_{k}\right)$,

$$
S^{\prime}(X)=\frac{1}{k!} \prod_{j=1}^{k}\left(X_{1}^{i j}-X_{0}^{j}\right)
$$

\triangleright Very useful: in practice, we always deal with piecewise linear paths.
\triangleright Needed: concatenation operations.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.
- Then

$$
S(X * Y)=S(X) \otimes S(Y)
$$

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.
- Then

$$
S(X * Y)=S(X) \otimes S(Y)
$$

\triangleright We can compute the signature of piecewise linear paths!
\triangleright Data stream of p points and truncation at $m: O\left(p d^{m}\right)$ operations.
\triangleright Fast packages and libraries available in C++ and Python.

Properties 2

Invariance under time reparametrization

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.

Properties 2

Invariance under time reparametrization

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- $\psi:[0,1] \rightarrow[0,1]$ a reparametrization

Properties 2

Invariance under time reparametrization

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- $\psi:[0,1] \rightarrow[0,1]$ a reparametrization
- If $\tilde{X}_{t}=X_{\psi(t)}$, then

$$
S(\tilde{X})=S(X) .
$$

Properties 2

Invariance under time reparametrization

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- $\psi:[0,1] \rightarrow[0,1]$ a reparametrization
- If $\tilde{X}_{t}=X_{\psi(t)}$, then

$$
S(\tilde{X})=S(X) .
$$

\triangleright A key advantage of the signature modeling.
\triangleright Encoding of the geometric properties of paths.

Properties 3

Time reversal

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.

Properties 3

Time reversal

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- \overleftarrow{X} time-reversal of $X: \overleftarrow{X}_{t}=X_{1-t}$
- If $\mathbf{1}=(1,0, \ldots, 0, \ldots) \in T\left(\mathbb{R}^{d}\right)$, then

$$
S(X) \otimes S(\overleftarrow{X})=\mathbf{1}
$$

Properties 3

Time reversal

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- \overleftarrow{X} time-reversal of $X: \overleftarrow{X}_{t}=X_{1-t}$
- If $\mathbf{1}=(1,0, \ldots, 0, \ldots) \in T\left(\mathbb{R}^{d}\right)$, then

$$
S(X) \otimes S(\overleftarrow{X})=\mathbf{1}
$$

\triangleright Think " $S(X)^{-1}=S(\overleftarrow{X})$ ".

Properties 3

Time reversal

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- \overleftarrow{X} time-reversal of $X: \overleftarrow{X}_{t}=X_{1-t}$
- If $\mathbf{1}=(1,0, \ldots, 0, \ldots) \in T\left(\mathbb{R}^{d}\right)$, then

$$
S(X) \otimes S(\overleftarrow{X})=\mathbf{1}
$$

\triangleright Think " $S(X)^{-1}=S(\overleftarrow{X})$ ".
\triangleright Signature not unique: $S(X) \otimes S(\overleftarrow{X})=S(X * \overleftarrow{X})=\mathbf{1}$

Properties 3

Properties 4

Tree-like paths

- Definition of an equivalence relation on paths such that

$$
X \sim Y \Leftrightarrow S(X)=S(Y) .
$$

Properties 4

Tree-like paths

- Definition of an equivalence relation on paths such that

$$
X \sim Y \Leftrightarrow S(X)=S(Y) .
$$

- $X \sim Y$ if $X * \overleftarrow{Y}$ is tree-like

Properties 4

Tree-like paths

- Definition of an equivalence relation on paths such that

$$
X \sim Y \Leftrightarrow S(X)=S(Y) .
$$

- $X \sim Y$ if $X * \overleftarrow{Y}$ is tree-like.
- $S(X)=1 \Leftrightarrow X$ tree-like.

Properties 4

Tree-like paths

- Definition of an equivalence relation on paths such that

$$
X \sim Y \Leftrightarrow S(X)=S(Y)
$$

- $X \sim Y$ if $X * \overleftarrow{Y}$ is tree-like.
- $S(X)=1 \Leftrightarrow X$ tree-like.
- Examples of tree-like paths:
$-x * \overleftarrow{X}$

Properties 4

Tree-like paths

- Definition of an equivalence relation on paths such that

$$
X \sim Y \Leftrightarrow S(X)=S(Y)
$$

- $X \sim Y$ if $X * \overleftarrow{Y}$ is tree-like.
- $S(X)=1 \Leftrightarrow X$ tree-like.
- Examples of tree-like paths:
$-x * \overleftarrow{X}$
$-X * \overleftarrow{X} * \overleftarrow{Y} * Y$

Properties 4

Tree-like paths

- Definition of an equivalence relation on paths such that

$$
X \sim Y \Leftrightarrow S(X)=S(Y)
$$

- $X \sim Y$ if $X * \overleftarrow{Y}$ is tree-like.
- $S(X)=1 \Leftrightarrow X$ tree-like.
- Examples of tree-like paths:
$-x * \overleftarrow{X}$
$-X * \overleftarrow{X} * \overleftarrow{Y} * Y$,
$-X * Y * \overleftarrow{Z} * Z * \overleftarrow{Y} * \overleftarrow{X}$.

Properties 4

Uniqueness

- For any X, there exists a unique path of minimal length in its equivalence class, denoted by \bar{X} and called the reduced path.

Properties 4

Uniqueness

- For any X, there exists a unique path of minimal length in its equivalence class, denoted by \bar{X} and called the reduced path.
- If X has at least one monotonic coordinate, then $S(X)$ determines X uniquely, up to translation and reparametrization.

Properties 4

Uniqueness

- For any X, there exists a unique path of minimal length in its equivalence class, denoted by \bar{X} and called the reduced path.
- If X has at least one monotonic coordinate, then $S(X)$ determines X uniquely, up to translation and reparametrization.
\triangleright The signature characterizes paths.
\triangleright Trick: add a dummy monotonic component to X.
\triangleright Important concept of augmentation.

Can we reconstruct the path from its signature?

\triangleright Currently a lot of work in this direction;
\triangleright Efficient algorithm for piecewise linear paths (Chang and Lyons, 2019) \rightarrow Python implementation.
\triangleright Applications in signal processing, e.g., sound compression, time series smoothing...

Can we reconstruct the path from its signature?

\triangleright Currently a lot of work in this direction;
\triangleright Efficient algorithm for piecewise linear paths (Chang and Lyons, 2019) \rightarrow Python implementation.
\triangleright Applications in signal processing, e.g., sound compression, time series smoothing...

Properties 5

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.

Properties 5

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.

Properties 5

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.
- Then, for every $\varepsilon>0$, there exists $w \in T\left(\mathbb{R}^{d}\right)$ such that, for any $X \in D$,

$$
|f(X)-\langle w, S(X)\rangle| \leq \varepsilon .
$$

Properties 5

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.
- Then, for every $\varepsilon>0$, there exists $w \in T\left(\mathbb{R}^{d}\right)$ such that, for any $X \in D$,

$$
|f(X)-\langle w, S(X)\rangle| \leq \varepsilon .
$$

\triangleright Signature and linear model are happy together!
\triangleright This raises many interesting statistical issues.

Properties 6

Exponential decay of signature coefficients

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.

Properties 6

Exponential decay of signature coefficients

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- Then, for any $k \geq 0, I \subset\{1, \ldots d\}^{k}$,

$$
\left|S^{\prime}(X)\right| \leq \frac{\|X\|_{1-\text { var }}^{k}}{k!}
$$

Properties 6

Exponential decay of signature coefficients

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a path.
- Then, for any $k \geq 0, I \subset\{1, \ldots d\}^{k}$,

$$
\left|S^{\prime}(X)\right| \leq \frac{\|X\|_{1-\text { var }}^{k}}{k!}
$$

\triangleright Useful for approximation properties.

Learning with signatures

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R} \quad$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R} \quad$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathscr{X} \times \mathscr{Y}$, i.i.d. $\sim(X, Y)$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R} \quad$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathscr{X} \times \mathscr{Y}$, i.i.d. $\sim(X, Y)$.
- Prediction function: $f_{\theta}(X) \approx Y, \theta \in \mathbb{R}^{p}$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R} \quad$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathscr{X} \times \mathscr{Y}$, i.i.d. $\sim(X, Y)$.
- Prediction function: $f_{\theta}(X) \approx Y, \theta \in \mathbb{R}^{p}$.

$y_{1}=1$

$y_{2}=1$

$y_{3}=2$

$y_{4}=3$

$y_{5}=2$

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.
- Empirical risk minimization: choose

$$
\hat{\theta} \in \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right) .
$$

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.
- Empirical risk minimization: choose

$$
\hat{\theta} \in \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right) .
$$

- Least squares regression: $\mathscr{Y}=\mathbb{R}$ and $\ell\left(y, f_{\theta}(x)\right)=\left(y-f_{\theta}(x)\right)^{2}$.

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.
- Empirical risk minimization: choose

$$
\hat{\theta} \in \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right) .
$$

- Least squares regression: $\mathscr{Y}=\mathbb{R}$ and $\ell\left(y, f_{\theta}(x)\right)=\left(y-f_{\theta}(x)\right)^{2}$.
- Binary classification: $\mathscr{Y}=\{0,1\}$ and $\ell\left(y, f_{\theta}(x)\right)=\mathbb{1}_{\left[f_{\theta}(x) \neq y\right]}$.

Feedforward neural network

$$
f_{\theta}(x)=\sigma\left(T_{L} \rho\left(T_{L-1} \rho\left(\cdots \rho\left(T_{1} x\right)\right)\right)\right)
$$

Feedforward neural network

$$
f_{\theta}(x)=\sigma\left(T_{L} \rho\left(T_{L-1} \rho\left(\cdots \rho\left(T_{1} x\right)\right)\right)\right)
$$

$\triangleright L-1$ hidden layers.

Feedforward neural network

$$
f_{\theta}(x)=\sigma\left(T_{L} \rho\left(T_{L-1} \rho\left(\cdots \rho\left(T_{1} x\right)\right)\right)\right)
$$

$\triangleright L-1$ hidden layers.
$\triangleright T_{\ell} x=W_{\ell} x+b_{\ell}, \ell=1, \ldots, L$.

Feedforward neural network

$$
f_{\theta}(x)=\sigma\left(T_{L} \rho\left(T_{L-1} \rho\left(\cdots \rho\left(T_{1} x\right)\right)\right)\right)
$$

$\triangleright L-1$ hidden layers.
$\triangleright T_{\ell} x=W_{\ell} x+b_{\ell}, \ell=1, \ldots, L$.
$\triangleright \rho=\operatorname{activation}$ function $(\operatorname{ReLU} \rho(x)=\max (x, 0))$.

Feedforward neural network

$$
f_{\theta}(x)=\sigma\left(T_{L} \rho\left(T_{L-1} \rho\left(\cdots \rho\left(T_{1} x\right)\right)\right)\right)
$$

$\triangleright L-1$ hidden layers.
$\triangleright T_{\ell} x=W_{\ell} x+b_{\ell}, \ell=1, \ldots, L$.
$\triangleright \rho=\operatorname{activation}$ function $(\operatorname{ReLU} \rho(x)=\max (x, 0))$.
$\triangleright \sigma=$ output function.

Signature + learning algorithm

Dense network

Signature + learning algorithm

\triangleright Yang et al. (2017): skeleton-based human action recognition.

Signature + learning algorithm

Dense network

\triangleright Yang et al. (2017): skeleton-based human action recognition.
\triangleright Sequence of positions of human joints \rightarrow high dimensional signature coefficients \rightarrow small dense network.

Temporal approaches

- Idea: construct a path of signature coefficients.

Temporal approaches

- Idea: construct a path of signature coefficients.

Temporal approaches

- Idea: construct a path of signature coefficients.

\triangleright Lai et al. (2017) and Liu et al. (2017): writer recognition.

Questions

- How should we choose the order of truncation?

Questions

- How should we choose the order of truncation?
- How does it perform compared to traditional functional linear models ?

Questions

- How should we choose the order of truncation?
- How does it perform compared to traditional functional linear models ?
- Could we find a canonical signature pipeline that would be a domain-agnostic starting point for practitioners?

The signature linear model

Regression model on the signature

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ random path, $Y \in \mathbb{R}$ random variable.

Regression model on the signature

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ random path, $Y \in \mathbb{R}$ random variable.
- Assumption: there exists $m^{*} \in \mathbb{N}, \beta^{*} \in \mathbb{R}^{s_{d}\left(m^{*}\right)}$ such that

$$
\mathbb{E}[Y \mid X]=\left\langle\beta^{*}, S^{m^{*}}(X)\right\rangle, \quad \text { and } \quad \operatorname{Var}(Y \mid X) \leq \sigma^{2}<\infty .
$$

Regression model on the signature

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ random path, $Y \in \mathbb{R}$ random variable.
- Assumption: there exists $m^{*} \in \mathbb{N}, \beta^{*} \in \mathbb{R}^{s_{d}\left(m^{*}\right)}$ such that

$$
\mathbb{E}[Y \mid X]=\left\langle\beta^{*}, S^{m^{*}}(X)\right\rangle, \quad \text { and } \quad \operatorname{Var}(Y \mid X) \leq \sigma^{2}<\infty .
$$

- Goal: estimate m^{*} and β^{*}.

Regression model on the signature

$\rightarrow m^{*}$ is a key quantity! Recall that

$$
s_{d}(m)=\sum_{k=0}^{m} d^{k}=\frac{d^{m+1}-1}{d-1}
$$

Regression model on the signature

$\rightarrow m^{*}$ is a key quantity! Recall that

$$
s_{d}(m)=\sum_{k=0}^{m} d^{k}=\frac{d^{m+1}-1}{d-1}
$$

Typical values of $s_{d}(m)$.

	$d=2$	$d=3$	$d=6$
$m=1$	2	3	6
$m=2$	6	12	42
$m=5$	62	363	9330
$m=7$	254	3279	335922

- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- For any $m \in \mathbb{N}, \alpha>0$,

$$
B_{m, \alpha}=\left\{\beta \in \mathbb{R}^{s_{d}(m)}:\|\beta\|_{2} \leq \alpha\right\} .
$$

- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- For any $m \in \mathbb{N}, \alpha>0$,

$$
B_{m, \alpha}=\left\{\beta \in \mathbb{R}^{s_{d}(m)}:\|\beta\|_{2} \leq \alpha\right\} .
$$

- For any $m \in \mathbb{N}, \beta \in B_{m, \alpha}$,

$$
\mathcal{R}_{m, n}(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left\langle\beta, S^{m}\left(X_{i}\right)\right\rangle\right)^{2} .
$$

- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- For any $m \in \mathbb{N}, \alpha>0$,

$$
B_{m, \alpha}=\left\{\beta \in \mathbb{R}^{s_{d}(m)}:\|\beta\|_{2} \leq \alpha\right\} .
$$

- For any $m \in \mathbb{N}, \beta \in B_{m, \alpha}$,

$$
\mathcal{R}_{m, n}(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left\langle\beta, S^{m}\left(X_{i}\right)\right\rangle\right)^{2} .
$$

- For any $m \in \mathbb{N}$,

$$
\widehat{L}_{n}(m)=\inf _{\beta \in B_{m, \alpha}} \mathcal{R}_{m, n}(\beta) .
$$

Estimation of m^{*}

Estimator:

$$
\widehat{m}=\min \left(\underset{m}{\operatorname{argmin}}\left(\widehat{L}_{n}(m)+\operatorname{pen}_{n}(m)\right)\right) .
$$

Result

Additional assumptions:

$\left(H_{\alpha}\right) \beta^{*} \in B_{m^{*}, \alpha}$.
$\left(H_{K}\right)$ There exists $K_{Y}>0$ and $K_{X}>0$ such that almost surely

$$
|Y| \leq K_{Y} \quad \text { and } \quad\|X\|_{1 \text {-var }} \leq K_{X} .
$$

Result

Theorem

Let $K_{\text {pen }}>0,0<\rho<\frac{1}{2}$, and

$$
\operatorname{pen}_{n}(m)=K_{\text {pen }} n^{-\rho} \sqrt{s_{d}(m)} .
$$

Under the assumptions $\left(H_{\alpha}\right)$ and $\left(H_{K}\right)$, for any $n \geq n_{0}$,

$$
\mathbb{P}\left(\widehat{m} \neq m^{*}\right) \leq C_{1} \exp \left(-C_{2} n^{1-2 \rho}\right),
$$

where n_{0}, C_{1} and C_{2} are explicit constants.

Result

Theorem

Let $K_{\text {pen }}>0,0<\rho<\frac{1}{2}$, and

$$
\operatorname{pen}_{n}(m)=K_{\text {pen }} n^{-\rho} \sqrt{s_{d}(m)}
$$

Under the assumptions $\left(H_{\alpha}\right)$ and $\left(H_{K}\right)$, for any $n \geq n_{0}$,

$$
\mathbb{P}\left(\widehat{m} \neq m^{*}\right) \leq C_{1} \exp \left(-C_{2} n^{1-2 \rho}\right),
$$

where n_{0}, C_{1} and C_{2} are explicit constants.
Corollary \widehat{m} converges almost surely towards m^{*}.

Result

We can then estimate β^{*} by

$$
\widehat{\beta}=\underset{\beta \in B_{\overparen{m}, \alpha}}{\operatorname{argmin}} \mathcal{R}_{\widehat{m}, n}(\beta),
$$

Result

We can then estimate β^{*} by

$$
\widehat{\beta}=\underset{\beta \in B_{\widehat{m}, \alpha}}{\operatorname{argmin}} \mathcal{R}_{\widehat{m}, n}(\beta),
$$

and show that

$$
\mathbb{E}\left(\left\langle\widehat{\beta}, S^{\widehat{m}}(X)\right\rangle-\left\langle\beta^{*}, S^{m^{*}}(X)\right\rangle\right)^{2}=\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)
$$

Functional linear model

- In the case $d=1$,

$$
Y=\alpha+\int_{0}^{1} X(t) \beta(t) d t+\varepsilon
$$

Functional linear model

- In the case $d=1$,

$$
Y=\alpha+\int_{0}^{1} X(t) \beta(t) d t+\varepsilon
$$

- Basis expansion:

$$
\beta(t)=\sum_{k=1}^{K} b_{k} \phi_{k}(t), \quad X_{i}(t)=\sum_{k=1}^{K} c_{i k} \phi_{k}(t)
$$

Functional linear model

- In the case $d=1$,

$$
Y=\alpha+\int_{0}^{1} X(t) \beta(t) d t+\varepsilon
$$

- Basis expansion:

$$
\beta(t)=\sum_{k=1}^{K} b_{k} \phi_{k}(t), \quad X_{i}(t)=\sum_{k=1}^{K} c_{i k} \phi_{k}(t)
$$

- Back to the multivariate case: estimate the $b_{k} \mathrm{~s}$.

Functional linear model

- In the case $d=1$,

$$
Y=\alpha+\int_{0}^{1} X(t) \beta(t) d t+\varepsilon
$$

- Basis expansion:

$$
\beta(t)=\sum_{k=1}^{K} b_{k} \phi_{k}(t), \quad X_{i}(t)=\sum_{k=1}^{K} c_{i k} \phi_{k}(t)
$$

- Back to the multivariate case: estimate the $b_{k} s$.
\triangleright Choice for $\phi_{1}, \ldots, \phi_{K}$? Splines, monomials, Fourier basis... or functional principal components of the X_{i} s.

Functional linear model

- In the case $d=1$,

$$
Y=\alpha+\int_{0}^{1} X(t) \beta(t) d t+\varepsilon
$$

- Basis expansion:

$$
\beta(t)=\sum_{k=1}^{K} b_{k} \phi_{k}(t), \quad X_{i}(t)=\sum_{k=1}^{K} c_{i k} \phi_{k}(t)
$$

- Back to the multivariate case: estimate the $b_{k} s$.
\triangleright Choice for $\phi_{1}, \ldots, \phi_{K}$? Splines, monomials, Fourier basis... or functional principal components of the X_{i} s.
\triangleright If $d>2$? Treat each coordinate independently.

Dimension study

- Gaussian processes covariates: or any $t \in[0,1], 1 \leq i \leq n$, $1 \leq k \leq d$,

$$
X_{i, t}^{k}=\alpha_{i}^{k} t+\xi_{i, t}^{k}, \quad 1 \leq k \leq d, \quad t \in[0,1],
$$

Dimension study

- Gaussian processes covariates: or any $t \in[0,1], 1 \leq i \leq n$, $1 \leq k \leq d$,

$$
X_{i, t}^{k}=\alpha_{i}^{k} t+\xi_{i, t}^{k}, \quad 1 \leq k \leq d, \quad t \in[0,1],
$$

- ξ_{i}^{k} is a Gaussian process with exponential covariance matrix.

Dimension study

- Gaussian processes covariates: or any $t \in[0,1], 1 \leq i \leq n$, $1 \leq k \leq d$,

$$
X_{i, t}^{k}=\alpha_{i}^{k} t+\xi_{i, t}^{k}, \quad 1 \leq k \leq d, \quad t \in[0,1],
$$

- ξ_{i}^{k} is a Gaussian process with exponential covariance matrix.
- Response is the norm of the trend: $Y_{i}=\left\|\alpha_{i}\right\|$.

Dimension study

- Gaussian processes covariates: or any $t \in[0,1], 1 \leq i \leq n$, $1 \leq k \leq d$,

$$
X_{i, t}^{k}=\alpha_{i}^{k} t+\xi_{i, t}^{k}, \quad 1 \leq k \leq d, \quad t \in[0,1],
$$

- ξ_{i}^{k} is a Gaussian process with exponential covariance matrix.
- Response is the norm of the trend: $Y_{i}=\left\|\alpha_{i}\right\|$.

Dimension study

Electricity consumption

- Electricity consumption of 370 clients, recorded every 15 min from 2011 to 2014.

Electricity consumption

- Electricity consumption of 370 clients, recorded every 15 min from 2011 to 2014.
- Observe a subset of clients during a week and predict the consumption peak of the following week: maximal consumption summed over all clients.

Electricity consumption

- Electricity consumption of 370 clients, recorded every 15 min from 2011 to 2014.
- Observe a subset of clients during a week and predict the consumption peak of the following week: maximal consumption summed over all clients.
- Vary the size of the subset: the more clients the more information!

Electricity consumption

- Electricity consumption of 370 clients, recorded every 15 min from 2011 to 2014.
- Observe a subset of clients during a week and predict the consumption peak of the following week: maximal consumption summed over all clients.
- Vary the size of the subset: the more clients the more information!

Electricity consumption

A generalized signature method for multivariate time series classification

Joint work with

James Morrill University of Oxford

Patrick Kidger
University of
Oxford

Terry Lyons
University of
Oxford

Overview

- Goal: systematic comparison of the different variations of the signature method.

Overview

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.

Overview

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.
- Define a generalised signature method as a framework to capture all these variations.

Overview

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.
- Define a generalised signature method as a framework to capture all these variations.
- Give practitioners some simple, domain-agnostic guidelines for a first signature algorithm.

Framework

- Input: a sequence $x \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, where

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{d}, n \in \mathbb{N}\right\}
$$

Racketsports dataset

A sample x with $d=6, n=30$

Framework

- Input: a sequence $\mathbf{x} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, where

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{d}, n \in \mathbb{N}\right\} .
$$

- Output: a label $y \in\{1, \ldots, q\}$.

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p}
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W: \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{w}
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.
Feature set

$$
\mathbf{y}_{i, j}=\left(\rho_{\mathrm{post}} \circ S^{m} \circ \rho_{\mathrm{pre}} \circ W^{j} \circ \phi^{i}\right)(\mathbf{x})
$$

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p}
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
w: S\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{w}
$$

\triangleright Signature or logsignature transform: S^{m}.

\triangleright Rescaling operation $\rho_{\text {nost }}$ or $\rho_{\text {pre }}$.

Feature set

$$
\mathbf{y}_{i, j}=\left(\rho_{\text {post }} \circ S^{m} \circ \rho_{\text {pre }} \circ W^{j} \circ \phi^{i}\right)(\mathbf{x}) .
$$

Augmentations

- Time augmentation

$$
\phi_{\mathbf{t}}(\mathbf{x})=\left(\left(t_{1}, x_{1}\right), \ldots,\left(t_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right) .
$$

Augmentations

- Time augmentation

$$
\phi_{\mathbf{t}}(\mathbf{x})=\left(\left(t_{1}, x_{1}\right), \ldots,\left(t_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right) .
$$

Sample $\mathrm{x} \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathbf{x}) \in \mathcal{S}\left(\mathbb{R}^{7}\right)$

Augmentations

- Time augmentation

$$
\phi_{\mathbf{t}}(\mathbf{x})=\left(\left(t_{1}, x_{1}\right), \ldots,\left(t_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right) .
$$

Sample $\mathrm{x} \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathbf{x}) \in \mathcal{S}\left(\mathbb{R}^{7}\right)$
\triangleright Sensitivity to parametrization and ensures signature uniqueness.

Augmentations

- Lead-lag augmentation

$$
\phi(\mathbf{x})=\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right), \ldots,\left(x_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right) .
$$

Augmentations

- Lead-lag augmentation

$$
\phi(\mathbf{x})=\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right), \ldots,\left(x_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right) .
$$

Sample $\mathbf{x} \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathbf{x}) \in \mathcal{S}\left(\mathbb{R}^{12}\right)$

Augmentations

- Lead-lag augmentation

$$
\phi(\mathbf{x})=\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right), \ldots,\left(x_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right) .
$$

Sample $\mathbf{x} \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathbf{x}) \in \mathcal{S}\left(\mathbb{R}^{12}\right)$
\triangleright Captures the quadratic variation of a process.

Augmentations

- Basepoint augmentation

$$
\phi(\mathbf{x})=\left(0, x_{1}, \ldots, x_{n}\right) \in \mathcal{S}\left(\mathbb{R}^{d}\right) .
$$

Augmentations

- Basepoint augmentation

$$
\phi(\mathbf{x})=\left(0, x_{1}, \ldots, x_{n}\right) \in \mathcal{S}\left(\mathbb{R}^{d}\right) .
$$

- Invisibility-reset augmentation

$$
\phi(\mathbf{x})=\left(\left(1, x_{1}\right), \ldots,\left(1, x_{n-1}\right),\left(1, x_{n}\right),\left(0, x_{n}\right),(0,0)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right) .
$$

Augmentations

- Basepoint augmentation

$$
\phi(\mathbf{x})=\left(0, x_{1}, \ldots, x_{n}\right) \in \mathcal{S}\left(\mathbb{R}^{d}\right) .
$$

- Invisibility-reset augmentation

$$
\phi(\mathbf{x})=\left(\left(1, x_{1}\right), \ldots,\left(1, x_{n-1}\right),\left(1, x_{n}\right),\left(0, x_{n}\right),(0,0)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right) .
$$

\triangleright Sensitivity to translations.

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p}
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W: \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{w} .
$$

\triangleright Signature or logsignature transform: S^{m}.

\triangleright Rescaling operation $\rho_{\text {poct }}$ or $\rho_{\text {pre }}$.
Feature set

$$
\mathbf{y}_{i, j}=\left(\rho_{\text {post }} \circ S^{m} \circ \rho_{\text {pre }} \circ W^{j} \circ \phi^{i}\right)(\mathbf{x}) .
$$

Windows

- Global window

$$
W(\mathbf{x})=(\mathbf{x}) \in \mathcal{S}\left(\mathbb{R}^{e}\right)
$$

Windows

- Sliding window

$$
W(\mathbf{x})=\left(\mathbf{x}_{1, \ell}, \mathbf{x}_{l+1, l+\ell}, \mathbf{x}_{2 /+1,2 /+\ell}, \ldots\right) \in \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right),
$$

Windows

- Expanding window

$$
W(\mathbf{x})=\left(\mathbf{x}_{1, \ell}, \mathbf{x}_{1, l+\ell}, \mathbf{x}_{1,2 l+\ell}, \ldots\right) \in \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right) .
$$

Windows

- Dyadic window

$$
W(\mathbf{x})=\left(W^{1}(\mathbf{x}), \ldots, W^{q}(\mathbf{x})\right) \in \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
=\left(\sigma^{1}, \ldots, \rho^{p}\right): S\left(\mathbb{R}^{d}\right) \rightarrow S\left(\mathbb{R}^{e}\right)^{p} .
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W: \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{w}
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.

Feature set

$$
\mathbf{y}_{i, j}=\left(\rho_{\text {post }} \circ S^{m} \circ \rho_{\text {pre }} \circ W^{j} \circ \phi^{i}\right)(\mathbf{x})
$$

Framework

- Signature transform

$$
S^{m}(\mathbf{x})=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{m}}\right)
$$

Framework

- Signature transform

$$
S^{m}(\mathbf{x})=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{m}}\right)
$$

- Logsignature transform $\log \left(S^{m}(\mathbf{x})\right)$, where for any $a \in T\left(\left(\mathbb{R}^{d}\right)\right)$,

$$
\log (a)=\sum_{k \geq 0} \frac{(-1)^{k}}{k}(1-a)^{\otimes k}
$$

Framework

- Signature transform

$$
S^{m}(\mathbf{x})=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{m}}\right)
$$

- Logsignature transform $\log \left(S^{m}(\mathbf{x})\right)$, where for any $a \in T\left(\left(\mathbb{R}^{d}\right)\right)$,

$$
\log (a)=\sum_{k \geq 0} \frac{(-1)^{k}}{k}(1-a)^{\otimes k} .
$$

\triangleright Same information and logsignature less dimensional but no linear approximation property.

Signature versus logsignature

Table 1: Typical dimensions of $S^{m}(\mathrm{x})$ and $\log \left(S^{m}(\mathrm{x})\right)$.

	$d=2$	$d=3$	$d=6$
$m=1$	$2 / 2$	$3 / 3$	$6 / 6$
$m=2$	$6 / 3$	$12 / 6$	$42 / 21$
$m=5$	$62 / 14$	$363 / 80$	$9330 / 1960$
$m=7$	$254 / 41$	$3279 / 508$	$335922 / 49685$

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline:

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi_{\mathbf{t}}\right)(\mathbf{x})
$$

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi_{\mathbf{t}}\right)(\mathbf{x})
$$

- Vary each group of options with regards to this baseline.

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi_{\mathbf{t}}\right)(\mathbf{x})
$$

- Vary each group of options with regards to this baseline.
- 4 classifiers: logistic regression, random forest, GRU, CNN.

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi_{\mathbf{t}}\right)(\mathbf{x}) .
$$

- Vary each group of options with regards to this baseline.
- 4 classifiers: logistic regression, random forest, GRU, CNN.
$\rightarrow 9984$ combinations.

Results

\triangleright Windows:

Results

\triangleright Invariance-removing augmentations:

Results

\triangleright Other augmentations:

Results

\triangleright Signature versus logsignature transform:

	Signature	Logsignature
Average ranks	$\mathbf{1 . 2 5}$	1.75
p-value		0.01

Canonical signature pipeline

Canonical signature pipeline

Implement this pipeline on the 30 datasets from the UEA archive, with a random forest classifier, and compare it to benchmark classifiers.

Canonical signature pipeline

Implement this pipeline on the 30 datasets from the UEA archive, with a random forest classifier, and compare it to benchmark classifiers.

\triangleright Competitive with ensemble methods (MUSE and HIVE COTE) and deep neural networks (MLCN and TapNet).

Conclusion

- Signatures are a flexible tool.

Conclusion

- Signatures are a flexible tool.
- The combination "signature + generic algorithm" \approx state-of-the-art.

Conclusion

- Signatures are a flexible tool.
- The combination "signature + generic algorithm" \approx state-of-the-art.
- Few computing resources and no domain-specific knowledge.

Conclusion

- Signatures are a flexible tool.
- The combination "signature + generic algorithm" \approx state-of-the-art.
- Few computing resources and no domain-specific knowledge.
- A lot of open questions and potential applications.

Thank you!

