

Fabian A. Harang

Regularization of Multiplicative SDEs through additive noise

CIRM "Pathwise Stochastic Analysis and Applications" - Mar. 10. 2021 Based on joint work with Lucio Galeati

STORM — **Stochastics for Time-Space Risk Models** Funded by the Research Council of Norway, project no. 274410, and the University of Oslo

Controlled equations

Consider the controlled ODE

$$\dot{u}_t = \sigma(u_t)\dot{\beta}_t, \quad u_0 \in \mathbb{R}^d, \ t \in [0, T].$$

$$(0.1)$$

Well known that if σ is Lipschitz w/ linear growth, and β is continuous, then existence and uniqueness holds.

• Under less restrictive assumptions on σ , we typically loose uniqueness, and only existence holds in general if σ is only continuous and bounded.

ODE vs controlled ODE

Existence and uniqueness of (0.1) is tightly linked with existence and Uniqueness of the classical ode

$$\dot{y} = \sigma(y_t), \quad t \in \mathbb{R}.$$
 (0.2)

- Indeed; Let y be a solution to (0.2), and set $u_t = y(\beta_t)$. Given that β is sufficiently nice, by the chain rule u solves (0.1).
- If uniqueness fails for the classical ODE, one can not expect to have uniqueness for the controlled ODE.
- If β is stochastic, with *H*-continuous sample paths with $H \in (\frac{1}{2}, 1)$, then pathwise techniques may still be used for the Chain rule to apply, and similar arguments holds.

Controlled stochastic equations

In stochastic analysis, we are interested in the case when β_t is no longer continuous, but only makes sense as the distributional derivative of some stochastic process {β_t}_{t∈[0, T]}.

we then typically write

$$\mathbf{d}u_t = \sigma(u_t) \, \mathbf{d}\beta_t \tag{0.3}$$

- Depending on the probabilistic structure of the noise β there are several ways to give meaning to such equations (Itô theory, Young theory, RP theory etc.).
- Again depending on the structure on the noise, we need at least Lipschitz (+) assumption on σ in order to obtain existence and uniqueness.

Regularization by noise for ODEs

• Consider the ODE perturbed by a continuous path $w : [0, T] \rightarrow \mathbb{R}^d$

$$x_t = x_0 + \int_0^t \sigma(x_s) \, \mathrm{d}s + w_t$$
 (0.4)

- We know that perturbations by certain continuous paths in classical ODEs might restore wellposedness, even for distributional σ, see e.g. [1, 4, 6].
- In fact using the framework of non-linear Young theory, existence and uniqueness of (0.4) essentially depends only on the regularity of the *averaged field* given by

$$[0, T] \times \mathbb{R}^d \ni (t, x) \mapsto T^w \sigma(t, x) := \int_0^t \sigma(x + w_s) \, \mathrm{d}s.$$

Regularization by noise for ODEs

In particular, if $T^w \sigma : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ satisfies

$$\begin{aligned} |\mathcal{T}^{w}\sigma(t,x)| + |\nabla \mathcal{T}^{w}\sigma(t,x)| &\leq C\\ |\mathcal{T}^{w}\sigma(t,x) - \mathcal{T}^{w}\sigma(t,y)| &\leq C|x-y|\\ |\nabla \mathcal{T}^{w}\sigma(t,x) - \nabla \mathcal{T}^{w}\sigma(t,y)| &\leq C|x-y| \end{aligned}$$

then there exists a (pathwise) unique solution to (0.4).

Our Goal

 Our goal is to show that a similar regularization by noise phenomena happens in equations with multiplicative noise on the form

$$u_t = u_0 + \int_0^t \sigma(u_t) \,\mathrm{d}\beta_t + w_t \tag{0.5}$$

6 / 27

when $\{\beta_t\}_{t \in [0, T]}$ is a fractional Brownian motion with $H > \frac{1}{2}$.

- That is, we aim to prove that perturbations by a well chosen (Hölder) continuous path $w \in C^{\delta}$ with $\delta \in (0, 1)$ will restore existence and uniqueness of (0.1), even when this fails in the case w = 0.
- Heuristically, solution u inherits the regularity $\min(H, \delta)$, and thus the integral is only well defined in the Young sense when $H + \min(\delta, H) > 1$.

Earlier work

- Much work exists on extending the existence and uniqueness results for SDEs with multiplicative noise in the case when w = 0.
- Typically extends classical assumptions for existence and uniqueness for ODEs to SDEs (e.g. monotonicity & coercivity assumptions, Osgood condition [7], local-Lipschitz, etc.).
- Difficult to find any work on regularization of multiplicative SDEs by additive noise (with $w \neq 0$).
- We are interested in allowing for distributional σ .

Fractional Brownian motion

Recall that a centered Gaussian process $\{\beta_t\}_{t \in [0, T]}$ is a fractional Brownian motion with Hurst parameter $H \in (0, 1)$ if

$$\mathbb{E}[eta_teta_s] = c_{H}(t^{2H} + s^{2H} - |t-s|^{2H}), \quad s < t \in [0, T].$$

• Well known that $t \mapsto \beta_t \in C_t^{H-} \mathbb{P}$ -a.s..

Notation

- For $p, q \in [1, \infty]$, and $\alpha \in \mathbb{R}$, $B^{\alpha}_{p,q}$ denotes the Besov spaces.
- For $\alpha \in \mathbb{R}$ we use $C^{\alpha}_{x} = C^{\alpha}(\mathbb{R}^{d}) = B^{\alpha}_{\infty,\infty}$
- For $\gamma \in (0, 1)$ and $\alpha \in \mathbb{R}$, will write $C_t^{\gamma} C_x^{\alpha} := C^{\gamma}([0, T]; C^{\alpha}(\mathbb{R}^d)).$
- \mathcal{P} will denote a partition of an interval $[a, b] \subset [0, T]$ (specific interval will be clear from context), and $|\mathcal{P}|$ denotes the mesh size.

Young framework and averaged fields

Assume $w_0 = 0$, and set $\theta = u - w$; observe that θ with $\theta_0 = u_0$ solves

$$\theta_t = u_0 + \int_0^t \sigma(\theta_s + w_s) \,\mathrm{d}\beta_s. \tag{0.6}$$

If $w \in C_t^{\delta}$ with $\delta + H > 1$, σ is sufficiently smooth (e.g. C_x^2), and the integral is interpreted in the Young sense, we know there exists a unique solution, and that $\theta \in C_t^{H-}$. We can therefore say that $u \in w + C_t^{H-}$.

Young framework and averaged fields

• If
$$w \in C^{\delta}$$
 with $\delta + H > 1$ We have
$$\int_{0}^{t} \sigma(\theta_{s} + w_{s}) d\beta_{s} \approx \sum_{[u,v] \in \mathcal{P}} \int_{u}^{v} \sigma(\theta_{u} + w_{r}) d\beta_{r}$$

To know convergence: need to understand regularity of the multiplicative averaged field

$$(t,x)\mapsto \Gamma^w\sigma(t,x):=\int_0^t\sigma(x+w_r)\,\mathrm{d}\beta_r.$$

Nonlinear Young integral

Proposition

Let E and V be Banach spaces, and suppose $A \in C^{\gamma}([0, T]; C^{\alpha}(E; V))$ and $y \in C^{\rho}([0, T]; E)$ such that $\gamma + \alpha \rho > 1$. Then the following limit exists in $C^{\gamma}([0, T]; V)$

$$\int_{0}^{t} A(\mathbf{d}s, y_{s}) := \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} A(v, y_{u}) - A(u, y_{u}), \qquad (0.7)$$

and we say that $t \mapsto \int_0^t A(ds, y_s)$ is a nonlinear Young integral. Moreover, the mapping $(A, y) \mapsto \int_0^{\cdot} A(ds, y_s)$ is continuous on $C^{\gamma}([0, T]; C^{\alpha}(E; V)) \times C^{\rho}([0, T]; E)$ and linear in A. (see [3, Thm. 2.7]).

Nonlinear Young equations

Proposition

Suppose $A \in C^{\gamma}([0, T]; C^{1+\kappa}(\mathbb{R}^d))$ with $\gamma(1+\kappa) > 1$. Then for any $x \in \mathbb{R}^d$ there exists a unique $\theta \in C^{\gamma}([0, T]; \mathbb{R}^d)$ which solves

$$\theta_t = x + \int_0^t A(\mathrm{d}s, \theta_s), \quad \forall t \in [0, T].$$

We call this equation a nonlinear Young equation. (see [3, Thm. 3.12])

UiO **Department of Mathematics**

Nonlinear Young integral

Recall that: $T^w \sigma : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ is given by

$$T^{w}\sigma(t,x) = \int_{0}^{t} \sigma(x+w_{r}) \,\mathrm{d}r, \qquad (0.8)$$

and suppose $T^w \sigma \in C^{\gamma}([0, T]; C^{\alpha}(\mathbb{R}^d))$ with $\gamma(1 + \alpha) > 1$.

Then for any $\theta \in C^{\gamma}([0, T])$ the following integral is well defined (in a Young sense \rightarrow Sewing lemma)

$$\int_{0}^{t} \sigma(\theta_{s} + w_{s}) \, \mathrm{d}s = \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} T^{w} \sigma(v, \theta_{u}) - T^{w} \sigma(u, \theta_{u}).$$

$$(0.9)$$

• If σ is continuous the integral agrees with the classical Riemann integral.

Fabian A. Harang

March 9, 2021 14 / 27

Regularity of $\Gamma^w \sigma$

Consider again the (stochastic) multiplicative averaged field

$$\Gamma^{w}\sigma(t,x) = \int_{0}^{t} \sigma(x+w_{r}) \, \mathrm{d}\beta_{r}, \quad (t,x) \in [0, T] \times \mathbb{R}^{d}. \quad (0.10)$$

- Would knowledge of the regularity of (t, x) → T^wσ(t, x) give us knowledge of the pathwise regularity of the stochastic field (t, x) → Γ^wσ(t, x)?
- If so, then we could define the integral appearing in (0.6) in a pathwise way by application again of the sewing lemma.
- More precisely: if we can prove that Γ^wσ ∈ C^{γ'}([0, T]; C^α(ℝ^d)) P-a.s. for some γ' > ¹/₂ and α ≥ 2, then pathwise existence and uniqueness holds for (0.6) (as a nonlinear Young equation).

Stochastic estimates

• M. Hairer and X-M. Lie (2020) [5]: For some $f : [0, T] \to \mathbb{R}^d$ with f_0 being \mathcal{F}_0 measurable, suppose $\|\int_0^{\cdot} f_r \, dr \|_{\gamma} \in L^q(\Omega)$ for some q > 2. Then for any $p \in [2, q)$ there exists a constant C > 0 such that

$$\left\|\int_{s}^{t} f_{r} \,\mathrm{d}\beta_{r}\right\|_{L^{p}(\Omega)} \leq C \left\|\left\|\int_{0}^{\cdot} f_{r} \,\mathrm{d}r\right\|_{\gamma}\right\|_{L^{q}(\Omega)} |t-s|^{H+\gamma-1}.$$
(0.11)

- Note that if w is deterministic, $T^w \sigma(t, x) = \int_0^t f_r \, dr$ with $f_r = \sigma(x + w_r)$ being deterministic, so $\|\int_0^{\cdot} f_r \, dr\|_{\gamma} \in L^q(\Omega)$ for any q > 2.
- !(0.11) does not give explicit regularity requirements on *w*!

Regularity of multiplicative averaged field

Theorem

If $w \in C_t^{\delta}$ and $\delta + H > 1$, then for any $b \in C_c^{\infty}(\mathbb{R}^d)$, the multiplicative averaged field $\Gamma^w \sigma$, defined as a Young integral, is a random field from $[0, T] \times \mathbb{R}^d \to \mathbb{R}^d$. The definition extends continuously in a unique way to any $(\sigma, w) \in \mathcal{D}(\mathbb{R}^d) \times C([0, T]; \mathbb{R}^d)$ such that $T^w \sigma \in C_t^{\gamma} C_x^{\eta}$ for some $\gamma > 1 - H$, $\eta > 0$. In that case

$$\Gamma^w \sigma \in L^p(\Omega; C^{\gamma'}_t C^{\eta'}_x), \ orall p < \infty, \ \gamma' < \gamma + H - 1, \ \eta' < \eta.$$

Furthermore, for any two pairs (w^i, σ^i) , i = 1, 2, we have

$$\mathbb{E}\left[\|\mathsf{\Gamma}^{w^1}\sigma^1-\mathsf{\Gamma}^{w^2}\sigma^2\|_{\gamma',\eta'}^p\right]\lesssim \|\mathcal{T}^{w^1}\sigma^1-\mathcal{T}^{w^2}\sigma^2\|_{\gamma,\eta}^p.$$

Strategy for proof:

- When $\delta + H > 1$ and $\sigma \in C_c^{\infty}(\mathbb{R}^d)$ the integral may be constructed analytically (as a Young integral; construction would hold for any $\beta \in C_t^{H^-}$, not only fBm).
- By lemma of Hairer and Li \rightarrow may extend to more general (w, σ) such that $T^w \sigma$ is sufficiently regular.
- A modified Garsia-Rodemich-Rumsey inequality allows us to give the conclusion.

Regularizing paths

- we say that w is a regularizing path if for some $\alpha \in \mathbb{R}$ and function $\sigma \in C_x^{\alpha} := B_{\infty,\infty}^{\alpha}$ there exists a $\rho > 0$ such that $T^w \sigma \in C_t^{\gamma} C_x^{\alpha+\rho}$ for some $\gamma > \frac{1}{2}$.
- What type of continuous paths $w : [0, T] \to \mathbb{R}^d$ is regularizing?
- Example: Almost all sample paths of a fractional Brownian motion is regularizing with $\rho = \frac{1}{2H} \epsilon$ (for any $\epsilon > 0$). [1]
- ∃ a class of continuous Gaussian processes, such that for almost all sample paths, and any $\sigma \in \mathcal{D}$ the averaged field $T^w \sigma \in C^{\gamma}([0, T]; C^n(\mathbb{R}^d))$ for some $\gamma > \frac{1}{2}$ and any $n \in \mathbb{N}$. [6]

Regularizing paths

- Heuristically, we observe that the more irregular trajectories of the stochastic process W is, the better regularization effect is seen in $T^w \sigma$.
- Regularity of $T^w \sigma$ has strong connection with regularity of the local time associated with the path w. Note that

$$T^{w}\sigma(t,x) = (\sigma * L_t^{w})(x), \qquad (0.12)$$

where L^w is the denotes the local time, given as the density associated to the occupation measure

$$\mu_t(A) := \{ s \le t; w_s \in A \}, \quad A \in \mathcal{B}(\mathbb{R}^d).$$

$$(0.13)$$

Main Theorem 1

Theorem

Let $H \in (\frac{1}{2}, 1)$, σ be a distribution such that $T^w \sigma \in C_t^{\gamma} C_x^2$ for some $\gamma \in (\frac{3}{2} - H, 1)$. Then path-by-path existence and uniqueness holds for

$$\theta_t = x + \int_0^t \Gamma^w \sigma(\mathbf{d}s, \theta_s), \quad \forall t \in [0, T],$$
(0.14)

where the integral is defined for a.a. $\omega \in \Omega$ by

$$\int_{0}^{t} \Gamma^{w} \sigma(\mathrm{d}s, \theta_{s})(\omega) = \lim_{|\mathcal{P}| \to 0} \sum_{[u,v]} \Gamma^{w} \sigma(v, \theta_{u})(\omega) - \Gamma^{w} \sigma(u, \theta_{u})(\omega).$$
(0.15)

Main Theorem 2

Theorem

Suppose β is a sample path of a fBm with $H > \frac{1}{2}$. Let σ be a compactly supported distribution in C_x^{α} and w be a sample path of an independent fBm with Hurst parameter $\delta \in (0, 1)$, and assume

$$\alpha > 2 - \frac{1}{\delta}(H - \frac{1}{2}).$$
 (0.16)

Then for any $u_0 \in \mathbb{R}^d$, existence and path-by-path uniqueness holds for the equation

$$u_t = u_0 + \int_0^t \sigma(u_s) \, \mathrm{d}\beta_s + w_t$$
 (0.17)

(*i.e.* $u = \theta + w$).

Strategy of proof

- Know from [4] that for $\sigma \in C_x^{\alpha}$ and W being fBm with Hurst parameter $\delta \in (0, 1) \implies T^W \sigma \in C_t^{\gamma} C_x^{\alpha+\kappa}$ for any $\gamma \in (\frac{1}{2}, 1]$ and $\kappa = \frac{1-\gamma}{2\delta} \mathbb{P}$ -a.s..
- Choose $w = W(\omega) \in C^{\delta-}$ such that $T^w \sigma \in C_t^{\gamma} C_x^{\alpha+\kappa}$
- From stochastic estimate, we have $\Gamma^w \sigma \in C_t^{\gamma'} C_x^{\alpha+\kappa'}$ for

$$\gamma' < \gamma + H - 1$$
 and $\kappa' < \kappa$. (0.18)

In order to apply NLY theory; need $\gamma' > \frac{1}{2}$ and $\alpha + \kappa' \ge 2$, which yields the claimed requirement.

Conclusion

- Perturbations by noise may regularize multiplicative SDEs.
- Did not use the Young requirement that $H + \delta > 1!$
- Simply extended to time dependent vector field σ, and equations with drift, e.g.

$$u_t = u_0 + \int_0^t b(s, u_s) \, \mathrm{d}s + \int_0^t \sigma(s, u_s) \, \mathrm{d}\beta_s + w_t. \quad (0.19)$$

Conclusion

- Removing the noise would be challenging: Similar to zero noise limit for ODEs.
- Extensions to rougher driving noise is challenging: Possibly need non-linear rough path theory and might not yield good regularization.
- if β is a B.M., Itô isometry may be used to connect (deterministic) averaged fields, and multiplicative averaged fields. Would result in Sobolev regularity requirements for σ of at least σ ∈ H² or similar.
- But already know the equation is well-posed for σ ∈ H¹ (see [2]).
- Rougher fBm seems to be worse...

The end! Thanks! I

- Rémi Catellier and Massimiliano Gubinelli.
 Averaging along irregular curves and regularisation of ODEs. Stochastic Process. Appl., 126(8):2323–2366, 2016.
- Nicolas Champagnat and Pierre-Emmanuel Jabin.
 Strong solutions to stochastic differential equations with rough coefficients.
 The Appals of Probability 46(3):1408 1541, 2018

The Annals of Probability, 46(3):1498 – 1541, 2018.

Lucio Galeati.

Nonlinear young differential equations: A review. Journal of Dynamics and Differential Equations, 2021.

Lucio Galeati and Massimiliano Gubinelli. Noiseless regularisation by noise, 2020.

The end! Thanks! II

- Martin Hairer and Xue-Mei Li. Averaging dynamics driven by fractional brownian motion. *Ann. Probab.*, 48(4):1826–1860, 07 2020.
- Fabian A. Harang and Nicolas Perkowski.
 C-infinity regularization of odes perturbed by noise, 2020.
- Yong Xu, Bin Pei, and Jiang-Lun Wu. Stochastic averaging principle for differential equations with non-lipschitz coefficients driven by fractional brownian motion. *Stochastics and Dynamics*, 17(02):1750013, 2017.