Paracontrolled calculus and regularity structures

Masato Hoshino

Kyushu University

9 March, 2021

Joint work with Ismaël Bailleul (Université Rennes 1)

・ロト ・回 ト ・ ヨト ・

3 From RS to PC

3 From RS to PC

Singular SPDEs contain ill-posed multiplications, e.g., generalized KPZ equation

$$\partial_t h = \partial_x^2 h + \underbrace{f(h)}_{\frac{1}{2}-} \underbrace{\partial_x h}_{-\frac{1}{2}-}^2 + \underbrace{g(h)}_{\frac{1}{2}-} \underbrace{\xi}_{-\frac{3}{2}-}$$

 $\text{Multiplication } C^{\alpha} \times C^{\beta} \to C^{\alpha \wedge \beta} \text{ is well-posed iff } \alpha + \beta > 0.$

Two approaches

- Regularity structure (Hairer, 2014)
- Paracontrolled calculus (Gubinelli-Imkeller-Perkowski, 2015)
 → High order PC (Bailleul-Bernicot, 2019)

The two approaches are different but believed to be equivalent.

イロト イヨト イヨト イ

Micro vs Macro

Both of RS and PC are extensions of the rough path theory for SDEs $\label{eq:dX} dX = F(X) dB.$

• RS provides a microscopic (pointwise) description

$$X_t - X_s = F(X_s)(B_t - B_s) + O(|t - s|^{1-}).$$

• PC provides a macroscopic (spectral) description

$$X = F(X) \otimes B + (C^{1-}).$$

 $\otimes: \mathsf{Bony's} \text{ paraproduct}$

$$f \otimes g = \sum_{i < j-1} \rho(2^{-i} \nabla) f \cdot \rho(2^{-j} \nabla) g,$$

where $\rho(2^{-i}\cdot)$ denotes a dyadic decomposition of 1.

Our aim is to show

microscopic description \Leftrightarrow macroscopic description

・ロト ・回ト ・ヨト ・ヨト

We obtained the equivalence between the two descriptions.

Rough path theory	RS		PC
Rough path	Model	⇔ [1]	Pararemainders
Controlled path	Modelled	\Leftrightarrow	Paracontrolled
	distribution	[2]	distribution
Stochastic integral	[Chandra-Hairer,	Future werk	No systematic
	2016]	Future work	theory

- [1] Bailleul-H, 2020
- [2] Bailleul-H, 2019 (on arXiv)

Related researches

- Martin-Perkowski, 2020 : paraproducts on RS.
- Tapia-Zambotti, 2020 : similar result for the branched rough paths.

イロト イヨト イヨト イヨ

3 From RS to PC

Concrete regularity structure

Branched RP is a continuous path from [0,T] to Butcher group, which is a character group on Connes-Kreimer algebra.

Hopf algebra H = "Jointing trees" + "Spliting a tree" = product $(\cdot : H \otimes H \to H) + \text{coproduct } (\Delta : H \to H \otimes H).$

Definition

A concrete regularity structure (T^+, T) consists of

• Connected graded Hopf algebra $T^+ = \bigoplus_{\alpha \in A^+} T^+_{\alpha}$.

$$A^{+} \subset [0,\infty) \quad \textit{loc. fin.,} \quad \dim T_{0}^{+} = 1, \quad \dim T_{\alpha}^{+} < \infty,$$

$$T_{\alpha_{1}}^{+} \cdot T_{\alpha_{2}}^{+} \subset T_{\alpha_{1}+\alpha_{2}}^{+},$$

$$\Delta^{+} : T^{+} \to T^{+} \otimes T^{+}, \quad \Delta^{+} T_{\alpha}^{+} \subset \oplus_{\alpha_{1}+\alpha_{2}=\alpha} (T_{\alpha_{1}}^{+} \otimes T_{\alpha_{2}}^{+})$$

Sraded right comodule $T = \bigoplus_{\beta \in A} T_{\beta}$.

 $A \subset \mathbb{R} \quad \text{loc. fin.,} \quad \inf A > -\infty, \quad \dim T_{\beta} < \infty, \\ \Delta : T \to T \otimes T^+, \quad \Delta T_{\beta} \subset \oplus_{\beta_1 + \beta_2 = \beta} (T_{\beta_1} \otimes T_{\beta_2}^+).$

Some remarks

Polynomial regularity structure is an easy example of RS.

•
$$T^+ = T = \mathbb{R}[X_1, \dots, X_d].$$

•
$$X^k := \prod_{i=1}^d X_i^{k_i}$$
, where $k = (k_i)_{i=1}^d \in \mathbb{N}^d$.

- Product $X^k \cdot X^\ell = X^{k+\ell}$
- Coproduct $\Delta X^k = \sum {k \choose \ell} X^\ell \otimes X^{k-\ell}$.

Character group

Since T^+ is a Hopf algebra, the set G of algebra morphisms $g:T^+\to \mathbb{R}$ forms a group with

- Product $(g_1 * g_2)(\tau) := (g_1 \otimes g_2) \Delta \tau$.
- Inverse $g^{-1} := g \circ S$, S is the antipode of T^+ .

 $G \curvearrowright T$ by

$$\hat{g}(\tau) := (\mathrm{id} \otimes g) \Delta \tau.$$

Original RS by Hairer consists of the pair (T, G).

イロト イヨト イヨト

Rough path theory	RS	
Rough path	Model	
Controlled path	Modelled distribution	
Sewing lemma	Reconstruction theorem	

Definition (Model)

The space \mathcal{M} consists of the pair $M = (g, \Pi)$ such that

• $g: \mathbb{R}^d \ni x \mapsto g_x \in G$ is a continuous map such that

$$g_{yx}(\tau) := (g_y * g_x^{-1})(\tau) = O(|y - x|^{\alpha}), \quad \tau \in T_{\alpha}^+.$$

• $\Pi: T \to \mathcal{S}'(\mathbb{R}^d)$ is a bounded operator such that

$$\Pi_x \tau(y) := (\Pi \otimes g_x^{-1}) \Delta \tau(y) = O(|y - x|^{\beta}), \quad \tau \in T_{\beta}.$$

Modelled distributions

Definition (Modelled distribution)

For $\gamma \in \mathbb{R}$ and any $M = (g, \Pi) \in \mathcal{M}$, the space $\mathcal{D}^{\gamma}(g)$ consists of all maps $f : \mathbb{R}^d \to T_{<\gamma} := \bigoplus_{\alpha < \gamma} T_{\alpha}$ such that

$$(f(y) - \widehat{g_{yx}}f(x))_{T_{\alpha}} = O(|y - x|^{\gamma - \alpha}), \quad \alpha < \gamma.$$

Reconstruction operator is a bounded operator $\mathcal{R}^M: \mathcal{D}^\gamma(g) \to \mathcal{S}'(\mathbb{R}^d)$ such that

$$\mathcal{R}^M f(y) = (\Pi_x f(x))(y) + O(|y-x|^{\gamma}), \quad f \in \mathcal{D}^{\gamma}(g).$$

Theorem (Hairer, 2014 & Caravenna-Zambotti, 2020)

- If $\gamma > 0$, the operator \mathcal{R}^M uniquely exists.
- If $\gamma < 0$, the operator \mathcal{R}^M exists but it is not unique.
- If $\gamma = 0$, the operator \mathcal{R}^M does not exists (logarithmic estimate is needed instead of boundedness).

イロト イヨト イヨト イヨ

From RS to PC

We prove

RS		PC
Model	\Rightarrow	Pararemainders
Modelled distribution	\Rightarrow	Paracontrolled distribution

Notations

• Each $\tau \in T_{\alpha}^{(+)}$ is said to be of homogeneity α . We write

$$|\tau| = \alpha.$$

• Fix a homogeneous basis $\mathcal{B}^{(+)}$ of $T^{(+)}$. For any $\tau, \sigma \in \mathcal{B}^{(+)}$, we define the element $\tau/\sigma \in T^+$ by

$$\Delta^{(+)}\tau = \sum_{\sigma \in \mathcal{B}^{(+)}} \sigma \otimes (\tau/\sigma).$$

In CK algebra and BHZ (Brined-Hairer-Zamotti, 2019) algebra, σ is a subtree of τ and τ/σ is a quotient graph.

$Model \Rightarrow Pararemainders$

For technical reasons, we consider the Hölder space with polynomial weights. We omit the details here.

Theorem (Bailleul-H, 2020)

Let $M = (g, \Pi) \in \mathcal{M}$. There exist continuous linear maps

$$[\cdot]^g: T^+ \to C(\mathbb{R}^d), \quad [\cdot]^M: T \to \mathcal{S}'(\mathbb{R}^d).$$

such that

• For any $\tau \in T^+_{\alpha}$, one has $[\tau]^g \in C^{\alpha}$, and

$$g(\tau) = \sum_{\eta \in \mathcal{B}^+, \, |\eta| < \alpha} g(\tau/\eta) \otimes [\eta]^g + [\tau]^g.$$

• For any $\sigma \in T_{\beta}$, one has $[\sigma]^M \in C^{\beta}$, and

$$\Pi \sigma = \sum_{\zeta \in \mathcal{B}, |\zeta| < \beta} g(\sigma/\zeta) \otimes [\zeta]^M + [\sigma]^M.$$

Modelled distribution \Rightarrow Paracontrolled distribution

Proposition (Bailleul-H, 2020)

Let $\gamma \in \mathbb{R}$ and $M = (g, \Pi) \in \mathcal{M}$. For any modelled distribution

$$f = \sum_{\tau \in \mathcal{B}, \, |\tau| < \gamma} f_{\tau} \tau \in \mathcal{D}^{\gamma}(g),$$

one has

$$f_{\sigma} = \sum_{\tau \in \mathcal{B}, \, |\sigma| < |\tau| < \gamma} f_{\tau} \otimes [\tau/\sigma]^g + [f_{\sigma}]^g, \quad \sigma \in \mathcal{B},$$

with $[f_{\sigma}]^g \in C^{\gamma-|\sigma|}$. Moreover, the reconstruction $\mathcal{R}^M f$ is of the form

$$\mathcal{R}^{M}f = \sum_{\tau \in \mathcal{B}, |\tau| < \gamma} f_{\tau} \otimes [\tau]^{M} + [f]^{M},$$

where $[f]^M \in C^{\gamma}$.

These formulas give an algebraic meaning to the paracontrolled systems (Gubinelli-Imkeller-Perkowski, 2015 and Bailleul-Bernicot, 2019).

Masato Hoshino (Kyushu University)

Paracontrolled calculus and regularity structures

3 From RS to PC

イロト イヨト イヨト イヨト

Recall

$$g(\tau) = \sum_{\eta \in \mathcal{B}^+, \, |\eta| < |\tau|} g(\tau/\eta) \otimes [\eta]^g + [\tau]^g,$$

$$\Pi \sigma = \sum_{\zeta \in \mathcal{B}, \, |\zeta| < |\sigma|} g(\sigma/\zeta) \otimes [\zeta]^M + [\sigma]^M,$$

$$f_{\sigma} = \sum_{\tau \in \mathcal{B}, \, |\sigma| < |\tau| < \gamma} f_{\tau} \otimes [\tau/\sigma]^g + [f_{\sigma}]^g.$$

To recover the original (g, Π) and f from $[\tau]^g, [\sigma]^M$, and $[f_\sigma]^g$, we need some additional (but harmless) assumptions.

Polynomials and derivatives

Assumption

Let $\mathcal{B}^{(+)}$ be a homogeneous basis of $T^{(+)}$.

• There exists a "generating" set $\mathcal{G}^+_{\circ} \subset \mathcal{B}^+$ such that, each element $\tau \in \mathcal{B}^+$ is uniquely represented as

$$\tau = X^k \prod_{n=1}^N (\tau_n / X^{k_n}),$$

where $k, k_1, \ldots, k_N \in \mathbb{N}^d$ and $\tau_1, \ldots, \tau_n \in \mathcal{G}^+_{\circ}$. Moreover, the splitting map Δ^+ admits some inductive structure (e.g. scale of the graph).

2 There exists a subset $\mathcal{B}_{\bullet} \subset \mathcal{B}$ such that, each element $\sigma \in \mathcal{B}$ is uniquely represented as

$$\sigma = X^k \eta,$$

where $k \in \mathbb{N}^d$ and $\eta \in \mathcal{B}_{\bullet}$.

(3) Any nonpolynomial element of $\mathcal{B}^{(+)}$ has noninteger homogeneity.

Graphical meanings

In BHZ algebra,

- \mathcal{B}_{\bullet} : all strongly conform trees with $\mathfrak{n} = 0$ at those roots.
- \mathcal{G}_{\circ}^+ : all "planted" trees with $\mathfrak{e} = 0$ at the edges leaving from their roots.

Assumptions on models

In what follows, we consider only the models (g,Π) such that

$$g_x(X^k) = x^k, \quad \Pi(X^k\eta)(x) = x^k(\Pi\eta)(x).$$

These are natural assumptions on polynomial elements.

イロト イポト イヨト イ

Theorem (Bailleul-H, 2019)

Subfamilies

$$\{[\tau]^g \in C^{|\tau|} \, ; \, \tau \in \mathcal{G}_{\circ}^+\}, \quad \{[\sigma]^M \in C^{|\sigma|} \, ; \, \sigma \in \mathcal{B}_{\bullet}, \, |\sigma| < 0\}.$$

are sufficient to recover the original model $M = (g, \Pi)$. This inverse map is continuous, so one obtains a homeomorphism

$$\mathcal{M} \simeq \prod_{\tau \in \mathcal{G}_{\circ}^{+}} C^{|\tau|} \times \prod_{\sigma \in \mathcal{B}_{\bullet}, \, |\sigma| < 0} C^{|\sigma|}$$

cf. Admissible models (by Hairer) are recovered by only

$$\{[\sigma]^M \in C^{|\sigma|} ; \, \sigma \in \mathcal{B}_{\bullet}, \, |\sigma| < 0\},\$$

since then T^+ and T are interwined.

イロト イヨト イヨト イヨト

Assumption

For any $\tau \in \mathcal{B}_{\bullet}$, its coproduct $\Delta \tau$ does not have components of the form

 $\sigma\otimes X^k$

with $k \neq 0$.

BHZ algebra does not seem to satisfy this assumption. Indeed,

$$\Delta I(X\Xi) = I(\Xi) \otimes X + \cdots .$$

However,

Proposition (Bailleul-H, 2019)

There is another basis of BHZ algebra which satisfies the above assumption.

We exchange n-decoration for the convolution with $x^k \partial^\ell K_t(x)$ (K_t is the integral kernel of type t).

Theorem (Bailleul-H, 2019)

Assume that $\gamma \neq 0$ and $\gamma - |\tau| \notin \mathbb{N}$ for any $\tau \in \mathcal{B}$. Then a subfamily

 $\{[f_{\sigma}]^g ; \sigma \in \mathcal{B}_{\bullet}, |\sigma| < \gamma\}$

is sufficient to recover the original modelled distribution $f \in D^{\gamma}(g)$. This inverse map is continuous, so one obtains a homeomorphism

$$\mathcal{D}^{\gamma}(g) \simeq \prod_{\tau \in \mathcal{B}_{\bullet}, |\tau| < \gamma} C^{\gamma - |\tau|}.$$

イロト イ団ト イヨト イヨ