Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

Yuzuru INAHAMA

Kyushu University

10 March 2021 at CIRM via online (Joint with Bin PEI, Yong XU. arXiv: 2010.06788)

Yuzuru INAHAMA

Kyushu University

Aim of the talk

We consider the following fast-slow system of stochastic equations:

$$\begin{cases} \mathrm{d}X_t^{\varepsilon} = f\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \sigma\left(X_t^{\varepsilon}\right) \mathrm{d}B_t^{\mathcal{H}}, \\ \mathrm{d}Y_t^{\varepsilon} = \frac{1}{\varepsilon}g\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \frac{1}{\sqrt{\varepsilon}}h\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}W_t. \end{cases}$$
(1)

Here, $0 < \varepsilon \ll 1$ is a small parameter, the initial value (x_0, y_0) is deterministic and indep of ε , (W_t) is standard BM, and (B_t^H) is FBM with $H \in (\frac{1}{3}, \frac{1}{2}]$. (the two processes are indep.)

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

& First, we formulate this system as RDE driven by the RP lift of (B^H, W) i.e., "mixed fractional BRP".

• Impose suitable assumptions on g, hso that the fast component Y becomes ergodic.

 \heartsuit Prove a (strong) averaging principle for X^{ε} , that is, as $\varepsilon \searrow 0$, X^{ε} converges to a natural limit process \bar{X} in L^1 -sense. (The limit satisfies the "averaged" equation.)

 ♦ To our knowledge, this is the first averaging result for fast-slow system in the framework of RP theory.
 (Note: Different problems are also called "averaging".)

Yuzuru INAHAMA

Background

AP for fast-slow systems has a long history and seems still quite active.

According to Freidlin-Wentzell's book, Soviet mathematicians did lots of works for this kind of averaging problems.

- ODE case → Bogolyubov, Volosov, Neishtadt, Anosov, etc.
- SDE case → Khas'minskii, Freidlin, Veretennikov, etc.

Note: This speaker is not an expert of AP. So, the list is probably far from complete.

Yuzuru INAHAMA

(Review: standard SDE case)

A typical formulation for the SDE case:

$$\begin{cases} \mathrm{d}X_t^{\varepsilon} = f\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \sigma\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}B_t, \\ \mathrm{d}Y_t^{\varepsilon} = \frac{1}{\varepsilon}g\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \frac{1}{\sqrt{\varepsilon}}h\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}W_t. \end{cases}$$

Here, (B_t) and (W_t) are two independent BM's.

The AP is a limit thorem for the slow component X^{ε} . There are two types of the averaging principle.

- Weak AP \longrightarrow limit in probability,
- Strong AP \longrightarrow limit in L^1 or L^p $(1 \le p < \infty)$.

Yuzuru INAHAMA

Concerning this, the following are well-known among experts:

(A) For the diffusion coefficient σ in front of dB, there are two types of setting, namely σ(X, Y) and σ(X).
 Weak AP was proved for σ(X, Y)-type, but strong AP was proved for σ(X)-type only.

(B) In fact, a counterexample is known. Givon ('07) find a fast-slow system of $\sigma(X, Y)$ -type for which weak AP holds, but strong AP fails.

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

(Review: the case of FBM with H > 1/2) Formally, the same fast-slow system:

$$\begin{cases} \mathrm{d}X_t^{\varepsilon} = f\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \sigma\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}B_t^{H}, \\ \mathrm{d}Y_t^{\varepsilon} = \frac{1}{\varepsilon}g\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \frac{1}{\sqrt{\varepsilon}}h\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}W_t. \end{cases}$$

Here, (W_t) is standard BM and (B_t^H) is FBM with $H \in (\frac{1}{2}, 1)$. (the two processes are indep.)

- X.M. Li Hairer ('20). Weak AP for σ(X, Y)-type. Young integration is used for X-component.
- Pei-I.-Xu ('20+). Strong AP for σ(X)-type.
 Fractional calculus generalization of Young integral in Zähle's, Nualart-Guerra-Rascanu's way for X-component.

Yuzuru INAHAMA

(Natural Question) What happens for smaller *H*? When $\frac{1}{4} < H \leq \frac{1}{2}$, FBRP exists and RP theory is available.

(Our Main Result) When $\frac{1}{3} < H \leq \frac{1}{2}$, we prove the strong AP for $\sigma(X)$ -type (convergence in L^1).

(Method) • Carry out the classical Khas'minskii discretization method in the framework of RP theory.

• Use Nualart-Hu's fractional calculus approach to RP theory. (But, this does not seem essential.)

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

Mixed fractional Brownian Rough Path

• Assume $\frac{1}{3} < H \leq \frac{1}{2}$ and write $B^H = B$. Then, natural RP lift of d'-dim BM W and d-dim FBM B exists: (W, W^2) and (B, B^2) .

• A natural lift of Z := (B, W) should be

$$Z_{st}^2 = \begin{pmatrix} B_{st}^2 & \int_s^t (B_u - B_s) \otimes \mathrm{d}W_u \\ \star & W_{st}^2 \end{pmatrix},$$

where $\star = W_{st}^1 \otimes B_{st}^1 - \int_s^t dW_u \otimes (B_u - B_s)$. (Integrals are Itô). • FS system (1) is understood as RDE driven by (Z, Z^2) . \rightsquigarrow "dW" in (1) is something like Stratonovich. [cf] Diehl-Oberhauser-Riedel '15, Neuenkirch-Shalaiko '15, in which (B, B^2) is deterministic.

Assumptions on coefficients 1

Redisplay our FS sytem:

$$\begin{cases} \mathrm{d}X_t^{\varepsilon} = f\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \sigma\left(X_t^{\varepsilon}\right) \mathrm{d}B_t, \\ \mathrm{d}Y_t^{\varepsilon} = \frac{1}{\varepsilon}g\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \frac{1}{\sqrt{\varepsilon}}h\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}W_t. \end{cases}$$

The coefficients $f : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$, $g : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$, $\sigma : \mathbb{R}^m \to \mathbb{R}^m \otimes \mathbb{R}^d$, $h : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n \otimes \mathbb{R}^{d'}$.

- (H1) f is a locally Lipschitz continuous vector field with at most linear growth, $\sigma \in C_b^4(\mathbb{R}^m; \mathbb{R}^m \otimes \mathbb{R}^d)$.
- (H2) g is a locally Lipschitz continuous vector field with at most linear growth, $h \in C_b^4(\mathbb{R}^m \times \mathbb{R}^n; \mathbb{R}^n \otimes \mathbb{R}^{d'})$.

(Remark) It is important to allow *g* to have linear growth. (*f* is assumed to be bounded in the next step.) Otherwise, it would be very hard to find meaningful examples.

[Riedel-Scheutzow '17] "RDE with unbounded drift term" Thanks to this result, the above FS system of RDEs have a unique solution under (H1) and (H2). (The price to pay is that C_b^4 -condition on σ , h, not C_b^3 .)

So, for each realization of (Z, Z^2) , there exists a unique solution $(X^{\varepsilon}, Y^{\varepsilon})$, which we will study.

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

Assumptions on coefficients 2

$$\begin{array}{l} \textbf{(H3)} \ f \in C_b^1(\mathbb{R}^m \times \mathbb{R}^n; \mathbb{R}^m). \\ \textbf{(H4)} \ \exists L > 0, \ \exists \beta_i > 0, \ i = 1, 2, \ \text{such that} \\ 2\langle \phi - \tilde{\phi}, \tilde{g}(\xi, \phi) - \tilde{g}(\xi, \tilde{\phi}) \rangle &+ |h(\xi, \phi) - h(\xi, \tilde{\phi})|^2 \\ \leq -\beta_1 |\phi - \tilde{\phi}|^2, \\ 2\langle \phi, \tilde{g}(\xi, \phi) \rangle + |h(\xi, \phi)|^2 &\leq -\beta_2 |\phi|^2 + L |\xi|^2 + L \\ \text{for any } \xi \in \mathbb{R}^m \ \text{and} \ \phi, \tilde{\phi} \in \mathbb{R}^n, \ \text{where} \\ \tilde{g}(\xi, \phi) := g(\xi, \phi) + \frac{1}{2} \sum_{\bar{l}=1}^n \sum_{\bar{j}=1}^{d'} \mathcal{D}_h^{(\bar{l})} h_{\bar{l},\bar{j}}(\xi, \phi), \ \mathcal{D}_h^{(\bar{l})} = \sum_{\bar{l}=1}^n h_{\bar{l},\bar{j}}(\cdot, \cdot) \partial_{\phi_{\bar{l}}}. \end{array}$$

Yuzuru INAHAMA

Kyushu University

• Consider the following "frozen SDE" for \forall fixed $\xi \in \mathbb{R}^m$:

 $\mathrm{d}Y_t^{\xi,\phi} = \tilde{g}(\xi, Y_t^{\xi,\phi}) \mathrm{d}t + h(\xi, Y_t^{\xi,\phi}) \mathrm{d}^{\mathrm{I}}W_t, \quad Y_0^{\xi,\phi} = \phi \in \mathbb{R}^n \quad (2)$

Here, $\int \cdots d^{I}W$ stands for the usual Itô integral.

- Under (H4), \exists ! invariant prob. meas. μ^{ξ} for above SDE (2).
- Define the "averaged RDE" by

$$\mathrm{d}\bar{X}_t = \bar{f}(\bar{X}_s)\mathrm{d}t + \sigma(\bar{X}_t)\mathrm{d}B_t, \qquad \bar{X}_0 = x_0, \tag{3}$$

where

$$ar{f}(\xi) = \int_{\mathbb{R}^n} f(\xi, \phi) \mu^{\xi}(\mathrm{d}\phi), \ \ \xi \in \mathbb{R}^m.$$

(Fast variable of f is "averaged out.")

Yuzuru INAHAMA

Our Main Result

(Strong-type averaging principle):

As $\varepsilon \searrow 0$, X^{ε} converges to the sol. \overline{X} of the averaged equation in sup-norm in L^1 .

Theorem 1

Let $\frac{1}{3} < H \leq \frac{1}{2}$ and (Z, Z^2) be the natural rough path lift of $(B_t, W_t)_{t \in [0,T]}$. Assume that f, σ, g, h satisfy (H1)-(H4). Then, we have

$$\lim_{\varepsilon\to 0}\mathbb{E}[\|X^{\varepsilon}-\bar{X}\|_{\infty}]=0.$$

Here, $\|\cdot\|_{\infty}$ denotes the supremum norm over [0, T] and X^{ε} and \overline{X} denote the first level paths of the slow component of (1) and (3), respectively.

Yuzuru INAHAMA

- Examples of f, σ, g, h do exist since we do not assume boundedness of g. (Of course, (H4) is the problem.)
- For instance, the following g, h satisfy (H4).

• When
$$d = d' = m = n = 1$$
,

$$g(\xi,\phi)=\xi-8\phi$$
 and $h(\xi,\phi)=\sin\xi+\sin\phi$

- Let $g(\xi, \phi) = -A(\xi)\phi$, where A is a bounded, positive, C_b^1 -function in ξ , which is also bounded away from zero. If C_b^2 -norm of h is sufficiently small, then these g and h satisfy (H4).
- Maybe, more....

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

Framework of our proof

- ∃ Extensions of this approach: Yu Ito (higher level case), Garrido-Atienza and Schmalfuss '18 (with drift) among others.
- We do not show their formulation in our slides, because these equations are quite long. (Sorry!)
- Other formulations of RP theory (e.g., controlled path theory) are probably OK, too. But, not confirmed yet.

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

Simple Observations

\clubsuit Fast component Y^{ε} actually satisfies the following Itô integral "equation":

$$Y_t^{\varepsilon} = \frac{1}{\varepsilon} \int_0^t \tilde{g}\left(X_s^{\varepsilon}, Y_s^{\varepsilon}\right) \mathrm{d}s + \frac{1}{\sqrt{\varepsilon}} \int_0^t h\left(X_s^{\varepsilon}, Y_s^{\varepsilon}\right) \mathrm{d}^{\mathrm{Ito}} W_s.$$

We mimick Neuenkirch-Shalaiko '15, etc. (For this part, we use controlled path theory.)

****** Now integral on RHS is of Itô-type, we can do a typical computation for ergodicity/∃! invariant distribution for SDEs under dissipative-type condition (H4).

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

• Let's observe that slow component X^{ε} is not so "strongly coupled" with Y^{ε} .

♠♠ For any usual deterministic continuous path $y = (y_t)$, the following RDE driven by (B, B^2) makes sense and well-posed since we assumed f is of C_b^1 in (H3).

$$\mathrm{d}\hat{X}_{t}^{y} = f\left(\hat{X}_{t}^{y}, y_{t}\right)\mathrm{d}t + \sigma\left(\hat{X}_{t}^{y}\right)\mathrm{d}B_{t}$$

We have the same estimates for \hat{X}^{y} as for the standard RDE with C_{b}^{3} -coefficient and these estimates do not depend on y.

 $\begin{array}{l} \begin{subarray}{lll} \begin{subarray}{llll} \begin{subarray}{llll} \begin{sub$

Yuzuru INAHAMA

We carry out Khas'minskii's discretization method in the RP framework.

♣ Take $\delta \in (0, 1)$ so that $0 < \varepsilon < \delta$ and $\varepsilon/\delta \to 0$ as $\varepsilon \searrow 0$, e.g. $\delta := \varepsilon \sqrt{-\log \varepsilon}$.

♣ Divide the time interval [0, T] into subintervals of equal length δ . For $s \in [0, T]$, $s(\delta)$ stands for the left end point of the subinterval to which s belongs.

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

• Define "intermediate" approximating processes:

$$\hat{Y}_t^{\varepsilon} = y_0 + \frac{1}{\varepsilon} \int_0^t \tilde{g}(X_{\boldsymbol{s}(\boldsymbol{\delta})}^{\varepsilon}, \hat{Y}_s^{\varepsilon}) \mathrm{d}\boldsymbol{s} + \frac{1}{\sqrt{\varepsilon}} \int_0^t h(X_{\boldsymbol{s}(\boldsymbol{\delta})}^{\varepsilon}, \hat{Y}_s^{\varepsilon}) \mathrm{d}^{\mathrm{I}} W_s,$$

and

$$\hat{X}_t^{\varepsilon} = x_0 + \int_0^t f(X_{\boldsymbol{s}(\boldsymbol{\delta})}^{\varepsilon}, \hat{Y}_{\boldsymbol{s}}^{\varepsilon}) \mathrm{d}\boldsymbol{s} + \int_0^t \sigma(X_{\boldsymbol{s}}^{\varepsilon}) \mathrm{d}\boldsymbol{B}_{\boldsymbol{s}}.$$

• To estimate
$$\|X^arepsilon - ar{X}\|_\infty$$
, we estimate

$$\|X^arepsilon - \hat{X}^arepsilon\|_\infty$$
 and $\|\hat{X}^arepsilon - ar{X}\|_\infty,$ separately.

Yuzuru INAHAMA

Kyushu University

Possible Future Developments

- First attempt in framework of RP theory.
- On the other hand, not truly deep. ∃ Room for sophistication even in the same formulation, e.g., L¹ → L^p ? and || · ||_∞ → || · ||_{α-Hld} (α < H)?
- Weak AP in "fully-coupled" setting?
- 3rd level case (i.e., $\frac{1}{4} < H \leq \frac{1}{3}$)?
- Other problems associated with AP for fast-slow systems: Normal deviation, FW-type large deviation, etc.

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

Fast component Y^ε is driven by standard BM W to ensure ergodicity for the sol. Y^{ξ,φ} of "frozen SDE".
 (Q) Can one replace W by FBM like this?

$$\begin{cases} \mathrm{d}X_t^{\varepsilon} = f\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \sigma\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}B_t^{H_1}, \\ \mathrm{d}Y_t^{\varepsilon} = \frac{1}{\varepsilon}g\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}t + \frac{1}{\varepsilon^{H_2}}h\left(X_t^{\varepsilon}, Y_t^{\varepsilon}\right) \mathrm{d}W_t^{H_2} \end{cases}$$

Here, $(B_t^{H_1})$ and $(W_t^{H_2})$ are independent FBM's.

(cf) \exists Very recent preprint by X.M.Li-Sieber in Young framework. $H_1, H_2 \in (1/2, 1), h \equiv \text{const.} \rightsquigarrow \text{weak AP.}$ Hairer(-Ohashi)'s version of ergodicity for FBM is used.

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path

The End

Yuzuru INAHAMA

Kyushu University