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Aim of the talk

& We consider the following fast-slow system of stochastic
equations:

dX? = (X5, YE)dt + o (XF)dBl,

1 1 1
dy; = gg(Xf, Y)dt + zh(X,f7 Y:)dW,. (1)
Here, 0 < ¢ < 1 is a small parameter,

the initial value (xo, yo) is deterministic and indep of &,

(W) is standard BM, and (Bf') is FBM with H € (3, 3].

(the two processes are indep.)
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& First, we formulate this system as RDE driven by the RP lift
of (B, W) i.e., “mixed fractional BRP".

& Impose suitable assumptions on g, h
so that the fast component Y becomes ergodic.

@ Prove a (strong) averaging principle for X¢, that is,
as € \, 0, X® converges to a natural limit process X in
['-sense. (The limit satisfies the “averaged” equation.)

<> To our knowledge, this is the first averaging result for
fast-slow system in the framework of RP theory.
(Note: Different problems are also called “averaging”.)
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Background

AP for fast-slow systems has a long history and seems still
quite active.

According to Freidlin-Wentzell's book, Soviet mathematicians
did lots of works for this kind of averaging problems.

m ODE case —— Bogolyubov, Volosov,
Neishtadt, Anosov, etc.

m SDE case ——  Khas'minskii, Freidlin,
Veretennikov, etc.

Note: This speaker is not an expert of AP.
So, the list is probably far from complete.
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(Review: standard SDE case)
A typical formulation for the SDE case:

AX = £ (X7 V) dt + o (X7 V)dBe,

€ 1 € € 1 € €
dYg =g (X;. Yt)dt+%h(Xt, YE) dW,.

Here, (B;) and (W;) are two independent BM's.

The AP is a limit thorem for the slow component X©.
There are two types of the averaging principle.

e Weak AP —— limit in probability,

e Strong AP — limitin L' or LP (1 < p < o0).
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Concerning this, the following are well-known among experts:

(A) For the diffusion coefficient o in front of dB, there are
two types of setting, namely o(X, Y) and o(X).
Weak AP was proved for o(X, Y)-type, but
strong AP was proved for o(X)-type only.

(B) In fact, a counterexample is known.

Givon ('07) find a fast-slow system of o (X, Y)-type for
which weak AP holds, but strong AP fails.
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(Review: the case of FBM with H > 1/2)
Formally, the same fast-slow system:

dX; = £ (X, Y7)dt + o (X], Y7)dBY,

£ 1 £ £ 1 3 3
AY7 = g (X7, Y{) e+ —=h (O, Y0) W,
Here, (W) is standard BM and (B}") is FBM with H € (3, 1).
(the two processes are indep.)

m X.M. Li - Hairer ('20). Weak AP for o(X, Y)-type.
Young integration is used for X-component.
m Pei-1.-Xu ('20+). Strong AP for o(X)-type.
Fractional calculus generalization of Young integral in
Zahle's, Nualart-Guerra-Rascanu’s way for X-component.

Yuzuru INAHAMA Kyushu University

Averaging principle for fast-slow system driven by mixed fractional Brownian rough path



(Natural Question) What happens for smaller H?

When 1 < H < I, FBRP exists and RP theory is available.

(Our Main Result) When £ < H < 1, we prove the strong AP
for o(X)-type (convergence in L*).

(Method) e Carry out the classical Khas'minskii discretization
method in the framework of RP theory.

e Use Nualart-Hu's fractional calculus approach to RP theory.
(But, this does not seem essential.)
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Mixed fractional Brownian Rough Path

e Assume % <H< % and write BY = B. Then, natural RP
lift of d’-dim BM W and d-dim FBM B exists: (W, W?)
and (B, B?).

e A natural lift of Z := (B, W) should be

72 - ( Br  J(B.-B)wdW, )
N ’

where x = WL ® BL — [ dW, ® (B, — Bs). (Integrals are It3).
e FS system (1) is understood as RDE driven by (Z, Z?).
~ “dW" in (1) is something like Stratonovich.
[cf] Diehl-Oberhauser-Riedel '15, Neuenkirch-Shalaiko 15,
in which (B, B?) is deterministic.
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Assumptions on coefficients 1

Redisplay our FS sytem:

dX; = f (X7, Yy)dt+ o (X;7)dB;,
(3 1 € 3 1 3 3
dY;y = -8 (X7, Yo)dt + %h(Xt, Y?) dW,.
The coefficients f : R” x R” - R™, g :R™ xR" — R",
c:R" 5 R"®@RY, h:R™xR"— R"®R?.
m (H1) f is a locally Lipschitz continuous vector field with
at most linear growth, o € C}(R™, R™ @ RY).
m (H2) g is a locally Lipschitz continuous vector field with
at most linear growth, h € CAH(R™ x R"; R" @ R?").
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(Remark) It is important to allow g to have linear growth.
(f is assumed to be bounded in the next step.)
Otherwise, it would be very hard to find meaningful examples.

[Riedel-Scheutzow '17]  “RDE with unbounded drift term”
Thanks to this result, the above FS system of RDEs have a
unique solution under (H1) and (H2).

(The price to pay is that C/-condition on o, h, not C}2.)

So, for each realization of (Z, Z?2), there exists a unique
solution (X¢, Y*¢), which we will study.
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Assumptions on coefficients 2

m (H3) f € C}(R™ x R"; R™).

m (H4) 3L > 0,38 > 0,i = 1,2, such that

+ ’h(ga ¢) _Nh(€7$)‘2
S _ﬁ1|¢_ ¢|27

< —Bolo + LIEP +L

206 — ¢, 8(€.0) — &(&,9))

2(0,£(&,9)) + |h(&, 9)
for any £ € R™ and ¢, (5 € R", where

&(¢.0) =g(&9) QZZD‘%-M D‘J’—Zh—- )y

=1 j=1
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e Consider the following “frozen SDE" for V fixed £ € R™:
AYE? = £(& YE)dt + h(E, YEO)I W, Y7 =g € R (2)

Here, [ ---d'W stands for the usual It6 integral.
e Under (H4), 3! invariant prob. meas. ;¢ for above SDE (2).
e Define the “averaged RDE" by

dX, = f(X)dt + o(X,)dB,,  Xo = xo, (3)

where

7O = [ fleomio). cerm

(Fast variable of f is “averaged out.”)
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Our Main Result

(Strong-type averaging principle):
As £ \, 0, X¢ converges to the sol. X of the averaged
equation in sup-norm in L1,

Theorem 1

Let £ < H < 3 and (Z, Z?) be the natural rough path lift of
(Be, We)iepo,1)- Assume that f, o, g, h satisfy (H1)-(H4).
Then, we have

lim E[|| X — X||s] = 0.
e—0
Here, || - || denotes the supremum norm over [0, T] and X*

and X denote the first level paths of the slow component of
(1) and (3), respectively.
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e Examples of f o, g, h do exist since we do not assume
boundedness of g. (Of course, (H4) is the problem.)
e For instance, the following g, h satisfy (H4).

B Whend=d =m=n=1,

g8(£,¢) =& — 8¢ and h(¢, ) = sin& +sing

m Let g(&,¢) = —A(§)¢, where A is a bounded, positive,
Ci-function in &, which is also bounded away from zero.
If C2-norm of h is sufficiently small, then these g and h
satisfy (H4).

m Maybe, more....
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Framework of our proof

m We basically use Hu-Nualart's fractional calculus
approach to RP theory. (A no special meaning here)

m 3 Extensions of this approach:  Yu Ito (higher level
case), Garrido-Atienza and Schmalfuss '18 (with drift)
among others.

m We do not show their formulation in our slides,
because these equations are quite long. (Sorry!)

m Other formulations of RP theory (e.g., controlled path
theory) are probably OK, too. But, not confirmed yet.
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Simple Observations

& Fast component Y*© actually satisfies the following 1t6
integral “equation”:
1

t
Yf_S/ (X5Y5d5+—/ h(XE, Ye)d ™ w,.
0

We mimick Neuenkirch-Shalaiko '15, etc.
(For this part, we use controlled path theory.)

&& Now integral on RHS is of It6-type, we can do a typical
computation for ergodicity/3! invariant distribution for SDEs
under dissipative-type condition (H4).
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& Let's observe that slow component X¢ is not so "strongly
coupled” with Y¢©.

A& For any usual deterministic continuous path y = ();), the
following RDE driven by (B, B?) makes sense and well-posed
since we assumed f is of C} in (H3).

ARy = f ()“q,yt) dt + o (x,{) dB,

We have the same estimates for X” as for the standard RDE
with C2-coefficient and these estimates do not depend on y.

MMM [fy = first level of Y& — XY= X"
So, estimating X¢ is not very difficult (and these estimates do
not depend on ¢).
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Discretization Method

We carry out Khas'minskii's discretization method in the RP
framework.

& Take 0 € (0,1) sothat 0 <e < dand /6 — 0 as ¢ \, 0,
e.g. 0 :=¢cy/—loge.

& Divide the time interval [0, T] into subintervals of equal
length 0. For s € [0, T], s(6) stands for the left end point of
the subinterval to which s belongs.
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e Define “intermediate” approximating processes:

oe 1/t e I
Yt:y°+g/0 (X Yds—i—\/_/ (X )dW
and

t t
X =xo+ / f(Xﬁ((;),\A/Ss)ds+ / o(X2)dBs.
0 0

e To estimate || X* — X||s, we estimate

XS — X%l and  ||X® — X||s, separately.
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Possible Future Developments

m First attempt in framework of RP theory.

m On the other hand, not truly deep. 3 Room for
sophistication even in the same formulation,
eg, L'~ LP?2and || - |l ~ || - lacma (o < H)?

m Weak AP in “fully-coupled” setting?
m 3rd level case (ie., 3 <H<2)7?

m Other problems associated with AP for fast-slow systems:
Normal deviation, FW-type large deviation, etc.
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& Fast component Y© is driven by standard BM W
to ensure ergodicity for the sol. Y&¢ of “frozen SDE".

(@) Can one replace W by FBM like this?

AX; = £ (X}, Yg)dt + o (XE, ¥¢) B,
1 1

dYs = -8 (X5, YE)dt + ETQ”(X? YE)dw/™".
Here, (Bf") and (W/") are independent FBM's.

(cf) 3 Very recent preprint by X.M.Li-Sieber in Young
framework.  Hy, H» € (1/2,1), h = const. ~ weak AP.
Hairer(-Ohashi)’s version of ergodicity for FBM is used.
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The End
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