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Introduction and overview

◦ Rough path theory offers an attractive framework to model the
effects of computationally unresolvable fluctuations on the
resolvable parts of fluid flows. [Palmer et al., 2009].
◦ In [Leahy et al., 2020] we formulated geometric fluid dynamics on

rough diffeomorphisms and characterized solutions of rough fluid
PDEs as critical points of constrained action functionals.
◦ In [Leahy et al., 2021], we establish local well-posedness and a

blow-up criterion for perfect incompressible fluids on geometric
rough paths within the framework of unbounded rough drivers
[Bailleul and Gubinelli, 2017].
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Hamilton’s principle: The Euler-Lagrange equations

◦ Let & be a manifold and ! ∈ �1()&, R).
◦ For given @1, @2 ∈ & and an interval [C1, C2], define

�(@1, @2, [C1, C2]) =
{
@ ∈ �2([C1, C2];&) : @(C1) = @1, @(C2) = @2

}
.

Theorem
A curve @ ∈ �(@1, @2, [C1, C2]) is a critical point of

((@) =
∫ C2

C1

!(@(C), ¤@(C))dC

if and only if
d
dC

[
%!

% ¤@ (@, ¤@)
]
=
%!

%@
(@, ¤@).
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Hamilton-Pontryagin principle

◦ Let (@, E, ?) be the local coordinates for the bundle � := )& ⊕ )∗&.
◦ ��(@1, @2, [C1, C2]) :={
(@, E, ?) ∈ �1([C1, C2];�) : @(C1) = @1, @(C2) = @2

}
.

Theorem ([Yoshimura and Marsden, 2006])
A curve (@, E, ?) ∈ ��(@1, @2, [C1, C2]) is a critical point of

((@, E, ?) =
∫ C2

C1

(
!(@(C), D(C)) + ?(C) · ( ¤@(C) − E(C))

)
dC

if and only if

¤@ = E, ¤? = %!

%@
, ? =

%!

%E
⇒ d

dC
%!

% ¤@ =
%!

%@
.
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Lie group setting

◦ Let & = � be a Lie group with Lie algebra g = )4� � X'(�).
◦ Assume that the Lagrangian ! ∈ �1()�; R) is right-invariant so that∫ C2

C1

!(@(C), ¤@(C))d =
∫ C2

C1

ℓ (D(C))dC, D := )'@−1 ¤@ = ¤@@−1 : [C1, C2] → g,

where ℓ : g→ R is defined by ℓ (D) := !(4, D), D ∈ g.
◦ Assume the functional derivative �ℓ

�D : g→ g∗ defined by

d
d&

��
&=0ℓ (D + &�D) = 〈

�ℓ
�D
(D), �D〉g, ∀ �D ∈ g.

is a diffeomorphism.
◦ Recall that ad = )4 Ad = )4)!6 ◦)'6−1 : g→ Der(g) is given by

ad� D = −[D, �], ∀�, D ∈ g.

◦ Let ad∗ : g→ Der(g∗) denote its dual relative to the pairing 〈·, ·〉g.
4 / 24



Euler-Poincaré reduction

◦ Let (@, D,�) be the local coordinates for the bundle � := � × g ⊕ g∗.
◦ ��(@1, @2, [C1, C2]) :={
(@, D,�) ∈ �1([C1, C2];�) : @(C1) = @1, @(C2) = @2

}
.

Theorem ([Yoshimura and Marsden, 2007])
The following are equivalent for a curve @ ∈ �(@1, @2, [C1, C2]):

◦ @ is a critical point of ((@) =
∫ C2

C1
!(@(C), ¤@(C))dC.

◦ @ satisfies the Euler-Lagrange equations.
◦ (@, D = ¤@@−1,� = �ℓ

�D ) ∈ ��(@1, @2, [C1, C2]) is a critical point of

((@, D,�) =
∫ C2

C1

ℓ (D(C)) + 〈�(C), ¤@(C)@−1(C) − D(C)〉g.

◦ D = ¤@@−1 ∈ g satisfies the Euler-Poincaré equations [Holm et al., 1998]

d
dC

�ℓ
�D
+ ad∗D

�ℓ
�D

= 0.
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Topological ideal hydrodynamics [Arnold, 1966]

◦ Let � = DiffB�6 ("), B >
3
2 + 1, be the topological group of Sobolev

volume-preserving diffeomorphisms on (", 6).
◦ g := )4� � XB�6 (") is isomorphic to the space of divergence-free

Sobolev vector fields.
◦ Define for @ ∈ �(@1, @2, [0,)])with D = ¤@@−1 : [0,)] → XB�6 ("):

((@) =
∫ )

0

∫
"

6@C
(
¤@C , ¤@C

)
�6 dC =

∫ )

0

∫
"

|D |2�6 dC.

◦ There exists a smooth geodesic spray [Ebin and Marsden, 1970]:

∇ ¤@ ¤@ = −∇? ◦ @, Euler-Lagrange equations,

⇔ %CD + ∇DD = −∇?, Euler-Poincare equations,

where ∇ is the Levi-Civita connection on DiffB(") induced by the
‘weak’ energy metric.
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Co-adjoint operator on diffeomorphism group

◦ Until further specified, all quantities are smooth.
◦ Let � = Diff(") and g = X(") = X.
◦ The canonical dual is given by g∗ = X∨ = Ω1 ⊗Ω3 with pairing

〈
 ⊗ �, D〉X =
∫
"


(D)�, 
 ⊗ � ∈ X∨, D ∈ X.

◦ Similarly, we can take volume-preserving � = Diff�6 and g = X�6
with the corresponding X∨�6 using the Hodge decomposition.
◦ We have adD E = −[D, E] = −£DE for all D, E ∈ X.
◦ Integrating by parts, we find [Holm et al., 1998]

〈
 ⊗ �, adD E〉X = 〈£D(
 ⊗ �), E〉X,

and thus the co-adjoint operator is the Lie derivative

ad∗D = £D : g∗ → Der(g∗).
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Advected quantities and the Lagrangian

◦ Let A be a summand of tensor field bundles.
◦ Paths in A are advected quantities such as temperature and density.
◦ Denote the corresponding duality pairing by 〈·, ·〉A : A∨ ×A→ R.
◦ Define the momentum map � : A∨ ×A→ X∨ [Holm et al., 1998]:

〈1, £D0〉A = −〈1 � 0, D〉X ∀0 ∈ A, 1 ∈ A∨, D ∈ X.

◦ Let ℓ : X×A→ R denote the fluid Lagrangian, which is physically
determined.
◦ Assume that �ℓ

�D : X×A→ X∨ and �ℓ
�0 : X×A→ A∨ are continuous:

d
d&

��
&=0ℓ (D + &�D, 0 + &�0) = 〈 �ℓ

�D
(D, 0), �D〉X + 〈

�ℓ
�0
(D, 0), �0〉A
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Geometric rough flows

◦ Let  ∈ N, 
 ∈ ( 13 , 1
2 ], and Z ∈ C


6 (R+; R ) be an 
 truly rough
geometric rough path.
◦ Let � = (�:) :=1 ∈ X

 be a collection of smooth vector fields.
◦ Let DiffZ denote the space of rough flows {�C} ⊂ Diff :

3�C = EC ◦ �CdC + �C ◦ �CdZC , �0 = id,

for arbitrarily given (E, �) ∈ �

)
(X) × �∞

)
(X ).

◦ For a given controlled rough path � ∈ D/,)(X∨), define∫ )

0
〈�C , d�C�−1

C 〉X :=
∫ )

0
〈�C , EC〉X dC +

∫ )

0
〈�C , �C〉X dZC .
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H-P variational principle on geometric rough paths

Theorem
A curve (�, D,�) is a critical point of

(HPZ(�, D,�) =
∫ )

0
ℓ (DC ,�C∗00)dt+ 〈�C , 3�C�−1

C − DCdt− �dZC〉X.

iff (�, D,� = �ℓ
�D ) ∈ DiffZ ×�


)
(X) ×D/,)(X∨) satisfy

d�C = DC ◦ �CdC + � ◦ �CdZC ,

d �ℓ
�D
+ £DC

�ℓ
�D

dC + £�
�ℓ
�D

dZC
X∨
=

�ℓ
�0
� 0CdC.

By the rough Lie chain rule, 0C = �C∗00 satisfies

d0 + £DC 0dC + £�0dZC
A
= 0.
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Kelvin circulation theorem

The density � ∈ �

)
(Ω3) is an advected quantity:

d� + £D�dC + £��dZC = 0 ⇔ �C = �C∗�0.

Theorem
Let Γ denote a compactly embedded one-dimensional smooth submanifold of
". If �0 is non-vanishing, then∫

�CΓ

1
�C

�ℓ
�D
(DC , 0C) =

∫
Γ

1
�0

�ℓ
�D
(D0, 00) +

∫ C

0

∫
�BΓ

1
�B

�ℓ
�0
(DB , 0B) � 0BdB.
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Rough incompressible Euler system

◦ Let ¤X�6 denote the incompressible and ‘harmonic-free‘ vector fields.
◦ Define the kinetic energy Lagrangian ℓ : ¤X�6 → R by

ℓ (D) = 1
2

∫
"

6(D, D)�6 .

◦ Thus, �ℓ
�D = [D♭ ⊗ �6] ∈ X∨�6 , which is an equivalence class.

◦ The corresponding equation for a critical point is given by:
dD♭ + £DDdC + £�D♭dZC = −d(d@C − 2−1 |D |2dC) − dℎ♭C
div�6 D

♭ = 0, �(D♭) = 0, �(@) = 0,
D |C=0 = D0,

where d denotes the exterior derivative, and the pressure term @

and harmonic term ℎ correspond to two constraints.
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Vorticity formulation

Since the exterior derivative d commutes with Lie derivatives, d2 = 0,
and dℎ♭ = 0, we get that the vorticity $ = dD♭ ∈ Ω2 is ‘advected’

d$ + £D$dC + £�$dZC = 0,
D = ♯d★

6Δ
−1$ =: BS($),

$ |C=0 = dD♭0 .

In particular, the dynamics of the vorticity preserve exactness and
thus there are no Lagrange multipliers, which is exploited in our
proof of well-posedness.

13 / 24



Rough incompressible fluid on the torus

◦ Let  ∈ N, ? ∈ [2, 3)], and Z = (/, Z) ∈ C
?−var
6 (R+, R )

◦ Let 3 ∈ {2, 3, . . .}, < ≥ b 32 c + 2, and � ∈,<+2,∞(T3, R3× ).
◦ For � ≥ 0, consider a system of rough PDEs on T3 × [0,)] given by

dD + D · ∇DdC + (�: · ∇D + (∇�:)D)d/:C = �ΔD − ∇d@C − dℎC ,
div D = 0,

∫
T3 D 3+ = 0,

∫
T3 @ 3+ = 0,

D |C=0 = D0, @ |C=0 = 0, ℎ |C=0 = 0
(1)

where D : [0,)] ×T3 → R3 is a divergence and mean-free vector
field, @ : [0,)] ×T3 → R is a mean-free time-integrated pressure,
and ℎ : [0,)] → R3 is a time-integrated harmonic constant.
◦ The case � > 0 was studied in [Leahy et al., 2020]. The � = 0 (i.e.,

Euler) is a new result.
◦ Henceforth, denote !:) = �: · ∇) + (∇�:)).
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Solution via Davie’s expansion

◦ Let ¤% denote the projection onto mean and divergence-free vector
fields. Recall that ¤% +& +� = id, where & and � denote the
gradient and harmonic projection, respectively.
◦ Let Z= = (/= , Z=) be the canonical lift of a sequence of piecewise

smooth paths converging to Z in the rough path topology.
◦ For a given D0 ∈,<,2

� , there exists a maximal solution
D= ∈ �([0,)max); ¤,<,2

� ) to the system (1) with Z replaced by Z= .
◦ It follows that (c.f., [Bailleul and Gubinelli, 2017])

�D=BC +
∫ C

B

¤%[D=A · ∇D=A − �ΔD=A ]3A = −
∫ C

B

¤%!:D=A d/=,:
A

= − ¤%!:D=B /=,:
BC + ¤%!: ¤%!;DBZ

=,;:
BC + D

=,%,♯
BC ,

where D=,%,♯
BC ∈ �

?

3−var
2 ([0,)]; ¤,<−3,2

� ).
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Definition of solution of velocity equation

Definition
A path

D ∈ !∞) ¤,
<,2
� ∩ �) ¤,<−3,2

�

is said to be a,<,2- solution of (1) on [0,)] if

D
¤%,♮
BC : = �DBC +

∫ C

B

¤%[DA · ∇DA − �ΔDA] 3A + ¤%!:DB/:BC − ¤%!: ¤%!;DBZ;:
BC

satisfies D ¤%,♮ ∈ �
?

3−var
2,),loc

¤,<−3,2
� . We say D is a,<,2-solution of (1) on

[0,)) if D is a solution on the interval [0,) − &] for all & > 0.
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Reconstruction of pressure and harmonic constant
Proposition
If D is a,<,2-solution of (1) on [0,)], then there exists unique paths
@ ∈ �?−var

)
¤,<−2,2 and ℎ ∈ �?−var

)
R3 initiating from zero such that

D
♮
BC : = �DBC +

∫ C

B

(DA · ∇DA − �ΔDA) 3A + !:DB/:BC

− !:!;DBZ;:
BC + ∇�@BC + �ℎBC

satisfies D♮ ∈ �
?

3−var
2,),loc,

<−3,2.

We construct @ and ℎ via the sewing lemma:

∇@C := −
∫ C

0
&DA · ∇DA 3A −

∫ C

0
&!:DAd/:A

ℎC := −
∫ C

0

∫
T3

(∇�:)DC3+d/:A .
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Equivalent vorticity formulation

Let ¤,2,<
d denote the !2-Sobolev space of <-times weakly

differentiable functions taking values in the space of anti-symmetric
matrices that are mean-free and have vanishing exterior derivative.

Proposition
If D is a,<,2-solution of (1) on the interval [0,)], then

Ω = curl D = (∇ −�)D ∈ !∞) ¤,
<−1,2
d ∩ �) ¤,<−4,2

d

Ω♮ = curl D ¤%,♮ ∈ �
?

3−var
2,),loc

¤,<−4,2
d

satisfy with LEΦ = E · ∇Φ+ (∇E)Φ+Φ(�E),

Ω
♮
BC = �$BC +

∫ C

B

(LDAΩA − �ΔΩA) 3A + L�:ΩB/
:
BC − L�:L�;ΩBZ

;:
BC , (2)

Conversely, if there exists $ and $♮ such that (2) holds with $0 = curl D0
and D := BS$, then D is a,<,2- solution of (1).
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Existence and uniqueness
Theorem
There exists a constant � = �(3,<, ?, |�|,<+2,∞) such that for any time )∗
satisfying

exp (�(1+ +Z(0,)∗))))∗ <
1

1+ |D0 |,<,2
,

there exists a unique,<,2-solution

D ∈ �F,)∗ ¤,<,2
� ∩ �)∗ ¤,<−,2

� ∩ �?−var
)∗

¤,<−1,2
� .

of (1) on the interval [0,)∗]. If � ∈,<+4,∞, then D ∈ �)∗ ¤,<,2
� .

Theorem
The above solution can be uniquely extended to a maximal time interval

D ∈ �F([0,)max); ¤,<,2
� )∩�([0,)max); ¤,<−,2

� )∩�?−var([0,)max); ¤,<−1,2
� ).

Moreover, if )max < ∞, then lim supC↑max
|DC |,<,2 = ∞.
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Continuous dependence on data

Theorem
Assume that {(D=0 , �= , �= , Z=}) ∈ ¤,<,2

� × [0,∞) ×,<+2,∞ × �?−var6

converges to {(D0, �, �, Z}).

Let {(D= ,)=max)}∞==1 and (D,)max)) denote the maximal solutions
corresponding to the data {(D=0 , �= , �= , Z=} and (D0, �, �, Z), respectively.

Then there exists an # ∈ N such that for all = ≥ # , )=max > )max.
Moreover, {D=}∞

==#
converges to D in �([0,)max); ¤,<−,2

� ) and the
weak-star topology of !∞([0,)max); ¤,<,2

� ).

In particular, if �= → 0, then the,<,2-Navier-Stokes solution D�=

solutions tend to the Euler solution D.
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Beale-Kato-Majda blow-up criterion

Theorem
Let D denote the unique maximal,<,2-solution of (1). There exists a
positive constants �1 = �1(3,<) and �2 = �2(?, 3,<, |�|,<+2,∞) such
that for all C ∈ [0,)max),

|DC |,<,2 ≤ �1(1+ |D0 |,<,2) exp
(
�2+Z(0, C) exp

(
�2

∫ C

0
|ΩA |!∞ dA

))
.

Moreover, if )max < ∞, then
∫ )max

0 |ΩC |!∞ dC = ∞.
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Global well-posedness in 23

Corollary
Let D denote the unique maximal,<,2-solution of (1) and Ω = curl D.
Then for all C ∈ [0,)max),

|ΩC |!∞ = |Ω0 |!∞ , if � = 0, |ΩC |!∞ ≤ |Ω0 |!∞ , if � > 0. (3)

Thus, by the BKM blow-up criterion, there exists a unique,<,2-solution
of (1) on [0,∞). Moreover, there exists positive constants �1 = �1(<) and
�2 = �2(?,<, |�|,<+2,∞) such that for all C ∈ R+,

|DC |,<,2 ≤ �1(1+ |D0 |,<,2) exp
(
�2+Z(0, C) exp (�2C |ΩC |!∞)

)
.

Various results such as Wong-Zakai approximation, Large deviation
principle, and the existence of a random dynamical system are
consequences.

22 / 24



Open issues

◦ Obtain solution estimates using only the velocity formulation. The
issue we face is the incompressibility constraint. In particular,
changing the structure of the noise in the velocity in a zero-order
way leads to difficulties due to the changed structure in the
vorticity equation.
◦ Uniqueness in 2D for $0 ∈ !∞. Existence seems possible, but we

don’t have enough regularity at the level of vorticity to take the
!2-norm of the difference of two solutions. In the deterministic
case, one proves uniqueness via the velocity formulation
[Yudovich, 1963, Majda et al., 2002]. Perhaps one can use a rough
flow approach like in the stochastic setting [Brzeźniak et al., 2016].
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Future outlook for applications

◦ Develop numerical schemes for rough PDEs
◦ Calibrate � for a cross-validated set of Gaussian rough paths (e.g.

FBM with �) on a coarse-grid from direct numerical simulations of
the underlying unperturbed fluid PDE.
◦ How can we update the parameters of the subgrid model with real

observational data?
◦ DNS data ought to be good for initializing parameters and learning

subgrid parameters. In the case of Lorenz 96, we can compare with
rigorous homogenization results.
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Unbounded rough drivers

◦ Let (�=)0≤=≤3 be a scale of Banach spaces possessing a smoothing
(��)�∈(0,1). Denote �−= = �∗= .
◦ Assume !: ∈ L(�=+1,�=), = ∈ {0, 2}, !:!; ∈ L(�=+2,�=), = ∈ {0, 1}.
◦ Assume that � : [0,)] → �−1 satisfies |��BC |�−1 ≤ +�(B, C).
◦ Assume that 5 ∈ �)�−0 is such that for all ) ∈ �3 ,

〈 5 ♮BC ,)〉 := 〈� 5BC ,)〉 + 〈��BC ,)〉 + 〈 5B , (!∗:)/
:
BC + !∗;!

∗
:Z

;:
BC ))〉

satisfies 5 ♮ ∈ �
?

3−var
2,+Z,),loc�−3.

◦ There exist an ! = !(?) > 0 such that for all (B, C) ∈ Δ[C0,)] with
+A(B, C) + +�(B, C) ≤ !,

| 5 ♮ |
?

3
?

3−var,[B,C],�−3
≤ �

(
sup
B≤A≤C

| 5A |−0+Z(B, C)
3
? + +�(B, C)+Z(B, C)

1
?

)
,

| 5 |?
?−var,[B,C],�−0

≤ �
(
+�(B, C) + sup

B≤A≤C
| 5A |−0(+�(B, C)

1
? + +Z(B, C)

1
? )

)
.
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Aspects of the proof

◦ We form the system of equations of the derivatives of $ up to order
< − 1, ($(<−1),$(<−1),♮), and obtain a priori estimates of
|$♮ | ?

3−var,,<−4,2 and |$ |?−var,,<−2,2 in terms of supB≤A≤C |$ |,<−1,2

using URD estimates.
◦ We form the system of equation for ($(<−1) ⊗ $(<−1),$(<−1),⊗2,♮)

and obtain a bound on $(<−1),⊗2,♮ using URD in the !∞-scale. We
then apply the rough Gronwall lemma [Deya et al., 2019] and
Bihari’s inequality to obtain estimates of supB≤A≤C |$ |,<−1,2 , thereby
closing the a priori estimates.
◦ To prove uniqueness, we work with the vorticity formulation and

develop the equation for the square.
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