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Introduction and overview

o Rough path theory offers an attractive framework to model the
effects of computationally unresolvable fluctuations on the
resolvable parts of fluid flows. [Palmer et al., 2009].

o In [Leahy et al., 2020] we formulated geometric fluid dynamics on
rough diffeomorphisms and characterized solutions of rough fluid
PDE:s as critical points of constrained action functionals.

o In [Leahy et al., 2021], we establish local well-posedness and a
blow-up criterion for perfect incompressible fluids on geometric
rough paths within the framework of unbounded rough drivers
[Bailleul and Gubinelli, 2017].
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Hamilton’s principle: The Euler-Lagrange equations

o Let Q be a manifold and L € CH(TQ, R).

o For given g1, g2 € Q and an interval [f1, f2], define

C(q1,q2, [t t2]) = {q € C*([t1, £21; Q) : q(t1) = g1, q(t2) = g2} .

A curve q € C(q1,q2, [t1,t2]) is a critical point of

tr
5(q) = / L(q(6), 4() dt

t
if and only if
L1 0| = Zig,)
dt aq 7.9 = aq 9.9)-
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Hamilton-Pontryagin principle

o Let(g,v,p) be the local coordinates for the bundle E := TQ & T*Q.
o Ce(q1,92,[t1,t2]) ==
{(@,0,p) € CUlt1, 2L E) 2 g(t) = g1, 4(t2) = g2}

Theorem ([ Yoshimura and Marsden, 2006])
A curve (q,v,p) € Ce(q1, 92, [t1, t2]) is a critical point of

15}
5(g,0,p) = / (L), u®) +p()- G0 - 0(t)) dt

31
if and only if

oy po9L 9L doL_odL
120 P=97 =% atoq  9q°
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Lie group setting

o Let Q = G be a Lie group with Lie algebra g = T,G = Xz(G).
o Assume that the Lagrangian L € C}(TG;R) is right-invariant so that

ta )
/t L(g(t),4(t)d = [ (u(t)dt, u:=TRp4=4q":[t,t2] > g,

where ¢ : g — R is defined by Z(u) :=Lle,u), u€g.

o Assume the functional derlvatlve 1 g — ¢" defined by

d
i | {(u+edu) = ( (u) ouy),, Voueg.
is a diffeomorphism.
o Recall thatad =T, Ad = T,TLg o TRy : g — Der(g) is given by
adsu =—[u,&], Vi ueg.

o Letad” : g — Der(g*) denote its dual relative to the pairing (-, -)q.
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Euler-Poincaré reduction

o Let(q,u,A) be the local coordinates for the bundle E := G X g ® g".
o Ce(q1,92 [t t2]) =
{(q,u,A) € CU([t1, 2l E) : q(t1) = q1, q(t2) = g2} .

Theorem ([Yoshimura and Marsden, 2007])

The following are equivalent for a curve q € C(q1, q2, [t1,t2]):
o q is a critical point of S(q) = ftltz L(q(t), q(t)) dt.

o g satisfies the Euler-Lagrange equations.

o (q,u= é]q‘l,)\ = %) € Ce(q1, 92, [f1, t2]) is a critical point of

)
5(q,1,A) = / £u(t) + (A®), 30570 - u()y.

o u = gq~! € g satisfies the Euler-Poincaré equations [Holm et al., 1998]

dot ., ol

aaﬁ'a ua—o.
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Topological ideal hydrodynamics [Arnold, 1966]

o LetG = Diffflg (M), s > £ +1, be the topological group of Sobolev
volume-preserving diffeomorphisms on (M, g).

o g:=T.G = X}, (M) is isomorphic to the space of divergence-free
Sobolev Vector fields.

o Define for g € C(q1,92,[0,T]) withu = g7 : [0,T] — lZX(M)

S(q)=/ /gq, qt, Gt) pg dt = / /Iul pg dt.

o There exists a smooth geodesic spray [Ebin and Marsden, 1970]:
Vg =-Vpog, Euler-Lagrange equations,

& Jdwu+V,u=-Vp, Euler-Poincare equations,

where V is the Levi-Civita connection on Diff*(M) induced by the
‘weak’ energy metric.
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Co-adjoint operator on diffeomorphism group

o Until further specified, all quantities are smooth.
o Let G = Diff(M) and g = ¥(M) = X.
o The canonical dual is given by g* = X" = Q! ® Q7 with pairing

(a®y,u)x=/a(u)y, a®@ueXx’, uek.
M

o Similarly, we can take volume-preserving G = Diff,, and g = X,
with the corresponding %Zg using the Hodge decomposition.

o Wehavead, v =—[u,v] = —£,v forall u,v € X.

o Integrating by parts, we find [Holm et al., 1998]

(a® u, ad, v)x = (Eu(a® ,U)/ v)x,
and thus the co-adjoint operator is the Lie derivative

ad;, = £, : g — Der(g").
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Advected quantities and the Lagrangian

o Let A be a summand of tensor field bundles.

[¢]

Paths in U are advected quantities such as temperature and density.

[e]

Denote the corresponding duality pairing by (-, )y : AY XA — R.

]

Define the momentum map o : AY X A — XY [Holm et al., 1998]:

(b, Eya)qg=—(boa,u)y VaeW beW, ueckl.

[¢]

Let £ : X X A — R denote the fluid Lagrangian, which is physically
determined.

[¢]

Assume that % X XA — XY and % 1 X XA — AY are continuous:

c?e' ob(u +edu,a+eda) = (—(u a), 6u>;¢+( (u a),0a)y

8/ 24



Geometric rough flows

LetKeN,a € (%, %], and Z € %g(R+;RK) be an «a truly rough
geometric rough path.

[¢]

[¢]

Let & = (Ek)f:1 € XK be a collection of smooth vector fields.

[e]

Let Diffz denote the space of rough flows {1;} c Diff :
dT]t =Utomdt+c7tomd2t, 10 =1id,

for arbitrarily given (v, 0) € C2(X) x C*(¥KX).
o For a given controlled rough path A € @7 r(X"), define

T T T
/ (A, dnen bz 3=/ (At, v)x dt+/ (At, 01)x dZ;.
0 0 0
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H-P variational principle on geometric rough paths

A curve (n,u, A) is a critical point of

T
sHPz (n,u,A)= / O(us, Npeag)dt + (A, dﬂtﬂz_l —wpdt — EAZ;)x.
0
iff (n,u, A = &) € Diffz xC%(X) X Dz,1(X) satisfy

dn: =us o mdt +&o ntdZt,

ol ol
d6 u[é dt+£gé dZt:(s—Oﬂtdt

By the rough Lie chain rule, a; = 1.a satisfies

da +£,,adt + £:adZ, 2 0.
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Kelvin circulation theorem

The density D € C4(Q%) is an advected quantity:

dD +£,Ddt +£:DdZy =0 & Dy = nuDo.

Let T denote a compactly embedded one-dimensional smooth submanifold of
M. If Dy is non-vanishing, then

1 66 1 6¢ ! 1 6¢
L mrsatuan= [ [ [ 5 gweonds
1]t
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Rough incompressible Euler system

o Let iy . denote the incompressible and ‘harmonic-free’ vector fields.

o Define the kinetic energy Lagrangian ¢ : iyg — R by

l(u) = %/Mg(u,u)yg.

o Thus, &£ = [’ ® pel € %;{g, which is an equivalence class.

o The corresponding equation for a critical point is given by:

du® + £,udt + £:u°dZ; = —d(dg; — 27 |u|?dt) — dh!
divy, u” =0, H(u")=0, H(q) =0,

Ul=o = Uy,

where d denotes the exterior derivative, and the pressure term g
and harmonic term / correspond to two constraints.
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Vorticity formulation

Since the exterior derivative d commutes with Lie derivatives, d = 0,
and d/” = 0, we get that the vorticity w = du” € Q, is ‘advected’

dw +£,wdt + £:wdZ; =0,
u = §dyA @ =: BS(w),
W= = dug.
In particular, the dynamics of the vorticity preserve exactness and

thus there are no Lagrange multipliers, which is exploited in our
proof of well-posedness.
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Rough incompressible fluid on the torus

o LetKeN,pe[23)],andZ=(Z,Z) €6, (R, RK)
o Letd €{2,3,...}, m > [£] +2,and & € W*2e (T4, R¥K),
o Forv > 0, consider a system of rough PDEs on T x [0, T] given by

du +u-Vudt + (& - Vu + (Vék)u)de =vAu —Vdg; —dhy,
divu=0, [,udV=0, [,qdV =0,

ult=o =uo, qle=0=0, hli=0=0
(1)
where u : [0,T]xT? - R%isa divergence and mean-free vector
field, g : [0,T] x T? — R is a mean-free time-integrated pressure,
and 1 : [0,T] » R%isa time-integrated harmonic constant.
o The case v > 0 was studied in [Leahy et al., 2020]. The v = 0 (i.e.,
Euler) is a new result.

o Henceforth, denote Ly = & - Vo + (VEx) .
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Solution via Davie’s expansion

o Let P denote the projection onto mean and divergence-free vector
fields. Recall that P + Q + H =id, where Q and H denote the
gradient and harmonic projection, respectively.

o LetZ" = (Z",Z") be the canonical lift of a sequence of piecewise
smooth paths converging to Z in the rough path topology.

o For a given ug € wr ’2, there exists a maximal solution
u" € C([0, Tnax); W 2) to the system (1) with Z replaced by Z".

o It follows that (c.f., [Bailleul and Gubinelli, 2017])

t t
oul +/ Plu - Vu!' —vAul]dr = —/ PLkudef’k
5 s

n,P,4
st 4

= —PLyuZ"* + PLyPLius 2 +u
r_ .
where u:t’P’ﬁ eC; ([0, T); W32,
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Definition of solution of velocity equation

A path
u € LYW 0 Crw—2

is said to be a W2 solution of (1) on [0, T] if

Py

t
uy" = Oug +/ P[ur -Vu, —vAu, ] dr + PLkusZi‘t - PLkPLluszgf
S

g |4
o S—var ;o m— . .
satisfies u"# e Cst IOCW;” 32 We say u is a W™2-solution of (1) on

[0, T) if u is a solution on the interval [0, T — €] for all € > 0.
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Reconstruction of pressure and harmonic constant

If u is a W™2-solution of (1) on [0, T, then there exists unique paths
q € CL" " W™=22 and h € CI™"R initiating from zero such that

t
uft ° = Ol +/ (uy - Vu, —vAu,) dr + LkusZ;‘t
S

— LiLiusZ% + Vogqse + 0hss

P_
3—var

m—3,2
2,T loc 4 :

satisfies uf € C

We construct g and & via the sewing lemma:

t t
Vaq: ::—/ Qu, - Vu, dr—/ QLiu,dzk
0 0

t
hy = — / / (V& udvdzk,
0 T
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Equivalent vorticity formulation

Let W denote the L2-Sobolev space of m-times weakly
differentiable functions taking values in the space of anti-symmetric
matrices that are mean-free and have vanishing exterior derivative.

If u is a W™2-solution of (1) on the interval [0, T], then

Q=curlu =(V-D)u € L;OW‘;”—LZ A CTW§1_4’2

P_
3—var

Qb = curlup'h € C2T10c

Arm—4,2
Wd
satisfy with L,® = v - VO + (Vo)D + ®(Dv),
h t
Ql, = dwst + / (L, Q, —vAQ,) dr + L, Qs ZF, — L, Ly, O, 2%, (2)
S

Conversely, if there exists w and w% such that (2) holds with wy = curl ug
and u := BS w, then u is a W™~ solution of (1).
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Existence and uniqueness

There exists a constant C = C(d, m, p, |E|wm+2e) such that for any time T,

satisfying
1

exp (C(l + CDZ(O, T;-))) T. < W,

there exists a unique W™--solution
Arm,2 Arm—,2 p—varys,m—1,2
u e Cw,];Wg N Cr, W, N CE W, .

of (1) on the interval [0, T.]. If & € W™+, then u € Cr, W,

Theorem

The above solution can be uniquely extended to a maximal time interval
1t € Cop([0, Tnax); W5") N C([0, Tnax); W5'™%) N CP ([0, Trnan); W' ™).

Moreover, if Tmax < oo, then lim supyy [t [ pyma = 0.
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Continuous dependence on data

Theorem

Assume that {(ul!, v", £", Z"}) € W)"* X [0, 00) X W2 x ch
converges to {(uo, v, &, Z}).

Let {(u", Thax)} oy and (u, Tiax)) denote the maximal solutions
corresponding to the data {(ug, vt EM 2} and (ug, v, &, Z), respectively.

Then there exists an N € IN such that forall n > N, T, > Thax.
Moreover, {u"}"_\; converges to u in C([0, Tiax); W =2 and the

weak-star topology of L™ ([0, Tax); W)

In particular, if v* — 0, then the W™2_Navier-Stokes solution u""
solutions tend to the Euler solution u.
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Beale-Kato-Majda blow-up criterion

Let u denote the unique maximal W™2-solution of (1). There exists a
positive constants C1 = C1(d, m) and Co = Ca(p, d, m, |&|ym2e) such
that for all t € [0, Tmax),

t
|1/lt|Wm,2 S Cl(l aF |u0|wm,2) eXp (Cz(DZ(O, t) eXp (CZ/ |Qr|L°° d?’)) .
0

. Tmax
Moreover, if Tmax < co, then fo | Q| dt = 0.
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Global well-posedness in 24

Corollary

Let u denote the unique maximal W™?-solution of (1) and Q = curl u.
Then for all t € [0, Timax),

|Qre = |Qolr, if v =0, [Qf|p= < |Qplr, if v > 0. (3)

Thus, by the BKM blow-up criterion, there exists a unique W™?-solution
of (1) on [0, 00). Moreover, there exists positive constants C1 = C1(m) and
Co = Colp, m, |E|wm+2) such that for all t € Ry,

|utlwma < C1(1 + [uglwnz) exp (C20z(0, ) exp (Cat Q1)) -
Various results such as Wong-Zakai approximation, Large deviation

principle, and the existence of a random dynamical system are
consequences.
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Open issues

o Obtain solution estimates using only the velocity formulation. The
issue we face is the incompressibility constraint. In particular,
changing the structure of the noise in the velocity in a zero-order
way leads to difficulties due to the changed structure in the
vorticity equation.

o Uniqueness in 2D for wy € L*. Existence seems possible, but we
don’t have enough regularity at the level of vorticity to take the
L2-norm of the difference of two solutions. In the deterministic
case, one proves uniqueness via the velocity formulation
[Yudovich, 1963, Majda et al., 2002]. Perhaps one can use a rough
flow approach like in the stochastic setting [BrzezZniak et al., 2016].
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Future outlook for applications

o Develop numerical schemes for rough PDEs

o Calibrate £ for a cross-validated set of Gaussian rough paths (e.g.
FBM with H) on a coarse-grid from direct numerical simulations of
the underlying unperturbed fluid PDE.

o How can we update the parameters of the subgrid model with real
observational data?

o DNS data ought to be good for initializing parameters and learning
subgrid parameters. In the case of Lorenz 96, we can compare with
rigorous homogenization results.
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Unbounded rough drivers

o Let (Ex)o<n<3 be a scale of Banach spaces possessing a smoothing
(JMne(,1)- Denote E_;, = Ej,.

o Assume Ly € L(E,4+1,E,), n € {0,2}, LyL; € L(E;42,E,), n € {0,1}.

o Assume that u : [0, T] — E_ satisfies [0pst|e_, < @u(s,t).

o Assume that f € CTE_g is such that for all ¢ € E3,

(FL,0) = (0 fut, O) + (Ottst, §) + (fs, (Lo ZE, + LLLZ%) )

3 —var
satisfies f% € C, oy TlocE-3-

o There exist an L = L(p) > 0 such that for all (s, t) € A, ) with
@A(s, 1)+ @u(s,t) < L,

3 1
fht_var e (sup I |—o@z(s, t)? +®H(s,t)caz(s,t)i’),

s<r<t

P oy <C (cay<s,t>+ sup 1f,|o(@u(s, ) +®z(51f);))~

s<r<t
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Aspects of the proof

o We form the system of equations of the derivatives of w up to order
m—1, (0", w"™"D#4), and obtain a priori estimates of
|wﬂ|g_varlwm,4,2 and |@|, _yar,wn-22 in terms of sup, ., |w|pm-12
using URD estimates.

o We form the system of equation for (w1 @ @1, "=1D®24)
and obtain a bound on w"~1€28 using URD in the L*-scale. We
then apply the rough Gronwall lemma [Deya et al., 2019] and
Bihari’s inequality to obtain estimates of sup, _, ., |@|yn-12, thereby
closing the a priori estimates.

o To prove uniqueness, we work with the vorticity formulation and
develop the equation for the square.
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