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Aim: We look for (Y, K) solving
thy+/ f(Ys) dAs +/ H(Y)dX K., telo,T],

such that, for every i =1,...,n,
(a) v/ > L, forall t €0, T],
(b) K': [0, T] — R is a non-decreasing function such that K} = 0, and

t . . -
/(Ys’—L’S)sz’: . telo, Tl
0

Input:
e L€ DP([0, T]; RY) (~ cadlag of finite p-variation)
e Ac DI([0, T];RY) for g = [1,2), X € DP([0, T];RY) for p < (2,3)
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Example plot of the solution Y and the barrier L:
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Example plot of the reflector K:
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Background - probabilistic setting

History on reflected SDEs:
e domains: Skorokhod '61, McKean '63, El Karoui '75, Tanaka '79,
Lions & Sznitman '83, Saisho '87, ...
e time-dependent boundaries L: Skorokhod 61', McKean '63, ...,
Falkowski & Slominski '16, ...

Classical probabilistic examples for A and X:
e Ais “time" t, a stoch. process of bounded variation, a fractional
Brownian motion with Hurst index H > 1/2, ...
e X is a Brownian motion, martingale, Lévy process, semi-martingale, ...
Examples for L: L =0 or adapted stoch. processes, “domains”, ...

Applications:
e probability theory: construction of constrained stoch. processes, ...
e mathematical modeling: queueing theory, mathematical finance, ...
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Aim: pathwise reflected cadlag differential equations, i.e.
Y, = y+/ f(Y.) dA, +/ (Y. dX. + Ki, te[o,T],
such that Y; > L; and (b) hold.

Motivation:
e new well-posedness results (non-semimartingale structure, ...)
e pathwise stability results
e deeper understanding of equations
L

Keep in mind: e.g. X = W is a Brownian motion.
= X € C% ass. for @ < 1/2 and one expects f(Y) € C~.
= /Ot f2(Ys) dXs is in general not well-defined.
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Setting f, = 1, let us first deal with
t
Yi—y+ / FV)dA. + X, + Key te[0,T],
Jo

such that Y; > L; and (b) hold, given

e L c DP([0, T]; RY) (~ cadlag of finite p-variation),
e Ac DI([0, T];RY) for g = [1.2), X € DP([0, T]; RY) for p = (2,3).

Recall: DP([0, T];R?) denotes the space of all cadlag paths
x: [0, T] = R of finite p-variation, i.e.

1
P
x|l ::( sup Z |Xv—Xu|p> < 0.

Pc[o,T] [u,v]eP
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Need to define [ f( Vo) dA. for Y € DP([0, T]; R™).

For x € DI([0, T]; RY) and y € DP([0, T]; £L(RY; R")), the Young integral

't
/ yrdx, := lim Z YuXuy, S tTE€ [0, 71,
S "P([SJ])'A)O [u7v]€73([s7t])

exists whenever 1/p +1/q > 1, and it comes with the estimate

't
[ 9@ = voxed| < Coallylp oy Xl
J S

for some constant C, 4, see Young '36 and Friz & Zhang '18.

Note it is crucial here to take left-point Riemann sums.
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Consider the reflected Young differential equation
Y, = y+/ F(Y.)dAs + X + Ky teo,T], (1)

such that Y; > L; and (b) hold.

Theorem (Allan, Liu, P. '20)

Let f € C2, q €[1,2) and p € [q, 00) such that . Let
y €R", Ae DI([0, T];RY), X € DP([0, T];RY) and L € DP([0, T]; R™)
such that y > Lg.

Then, there exists a unique solution (Y, K) to the reflected Young
differential equation (1).

Related works: Ferrante & Rovira '13, Falkowski & Slominski '15, ...
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Reflected differential equations are related to the Skorokhod problem.

Given Y, L € D([0, T]; R") be such that Yy > Lg. A solution to the

Skorokhod problem is a pair such that

(a) Zt = Y+ K, > L, for t €0, T],

(b) Ko =0and K = (K?,...,K"), where K’ is non-decreasing function
such that

.t . . .
|z Lyaki=o, te,T]
J0O

for every i = 1,..., n, where the latter integral is understood in the

Lebesgue—Stietjes sense.

Note: There exists a unique solution to the Skorokhod problem.
(See e.g. Burdzy, Kang & Ramanan '09)
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Skorokhod problem

The associated Skorokhod map & is denoted by
S:(Y,L)— (S1((Y,L)),S((Y, L)) = (Z,K).
Note:
e S is continuous w.r.t. uniform norms,
see Dupuis & Ishii '91, Dupuis & Ishii '93, Dupuis & Ramanan '99, ... .
e S is not Lipschitz continuous w.r.t. Holder norms,

see Ferrante & Rovira '13.

Theorem (Falkowski & Slominski "15)
S: (Y,L) — (Z,K) is Lipschitz continuous w.r.t. p-variation, that is

12 = Z]lp+ 1K = Kl
< C(IIY = ¥llp+ 1Yo = Yol + 1L = Lllp + Lo — Lo])-
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For t € (0, T] we define the solution map

M, DP([0, t]; R") — DP([0, t]; R")

by
Me(Y) 81(y+/f )dA, + X, L)
Step 1:
= M is a contraction map provided the norms of A, X, L are small.
= 3! fixed point of the map M; ( )

=- J! local solution to the reflected Young differential equation.

Step 2: Apply a pasting argument to construct a global solution.
Note one needs to treat the “large” jumps of the A, X, L per hand.
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Proposition (Allan, Liu, P. '20)
Let f € C2, g € [1,2) and p € [q,0) such that 1/p+1/q > 1.

Let (Y,K) and (Y, K) be the unique solutions to the reflected Young
differential equation given y,y € R", A/A € DI([0, T];R9),

X, X € DP([0, T);RY) and L, L € DP([0, T]; R") such that yo > Lo and
Vo > Lo, respectively.

If|All, < M and ||Al|, < M for some constant M, we have the estimates
1Y = ¥llp + K = K|,

< Cun (v = 71+ 1A= Al + 1X = Xl + Lo = Lo| + 1L - L,
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Consequences of these results:

e No semi-martingale structure is needed.

new well-posedness results for Gaussian processes, Dirichlet processes,
Markov processes, ...

pathwise stability results w.r.t. the p-variation distance and also w.r.t.
the Skorokhod J1 p-variation distance

= The pathwise theory of reflected Young differential equations works
equally well as the pathwise theory of classical Young differential equations.
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Reflected rough differential equations (RDEs)

Coming back to reflected RDE
Y, = y—l—/ f(Ys) dAs +/ fH(Ys)dXs + Key te[0,T],
such that Y: > L; and (b) hold.

Rough input: X € DP([0, T]; R9) with p € (2,3).
= Y e DP([0, T|; R")

Many recent approaches: Besal(, Maquez-Carreras & Rovira '14, Aida '15,
Aida '16, Castaing, Marine & De Fitte '17, Deya, Gubinelli, Hofmanova &
Tindel '19, Richard, Tanre & Torres '19, Gassiat '20, Ananova '20, ...
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We rely on cadlag rough path theory developed by Friz & Shekhar '17,
Friz & Zhang '18, Chevyrev & Friz '19, ...

A pair X = (X, X) is called a cadlag p-rough path over RY if
(i) X € DP([0, T];RY) and X € D2(A7;RY),
(ll) Xs,t — XS,U — Xu,t = XS,U X Xu,t for 0 S S S u S t S T.

A pair (Y, Y’) is called controlled path with respect to X if
Y € DP([0, TI;R") and Y’e DP([0, T];RY*™)

satisfy
RY, = Ysr — Y Xs: € D2(AT;RY).
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The (forward) rough integral

/ Y, dX, : lim S YuXuw + YiXuy, s, t€0,T],
 P(st) 0 e (s.0])

exists and comes with the estimate

t
/ Y, dX, — YeXor — YIXq
S

(s:])-

27

< C(IRYllg sy I Xllp (s + 1Yl
Note:
At<fd Y, dX,) =Y AX: + YI_AXq,

e Integration is a local Lipschitz continuous operator.
e classical RDE: existence, uniqueness, stability results, ...
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Consider the reflected RDE

Y = y+/ f(Ys)dXs + K, te]0,T], (2)

such that Y; > L; and (b) hold.
Proposition (Allan, Liu, P. '20)

For p € (2,3) let X = (X,X) be a cadlag p-rough path,
L € DP([0, T);R") and f € C3. Then, for every y € R" with y > Lg there
exists a solution (Y, Y’, K) to the reflected RDE (2) on [0, T].

Related works (all for continuous rough paths):

e domains: Aida '15
L = 0: Deya, Gubinelli, Hofmanova & Tindel '19
one-dimensional: Richard, Tanre & Torres '19
path-dependent RDEs: Aida '16 and Ananova 20
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Proof - Existence

Recall

= the controlled structure looks like

F(Y,) dX,
Ver = F(Ye) Xer + RU3

N \—\,—/

p-var p-v 2_var

2
= Banach'’s fixed point argument would require

1K~ Klls < 1K — K,

ﬁ
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but this inequality does not hold, see Deya, Gubinelli, Hofmanové & Tindel '19.
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Observation: Since K is increasing, an interpolation arguments reveals
- . 2 L 1-2
IK=Klle < |K—=K|{ [[K=Klp *

= the “extended” Skorokhod map & is locally Hélder continuity w.r.t.
| -1lp + Il - ll5/2 on the space of controlled paths V([0 t]; R").

Introduce the solution map M by
M VR0, t]; R™) — VE([O, t]; R™),
via Me(Y, Y') = (Suly + Z,L), f(Y)) with Z, ;z/ F(Y,)dX,.
0
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Proof - Existence

Step 1: For t € (0, T] small enough:

= M is a continuous map between compact sets:
compactness can be achieved since jumps are controlled by X & L
(~ equi-regulated sets)

= 3 fixed point of the map M, ( )

= 3 solution to the reflected RDE on small intervals

Step 2: Apply a pasting argument to construct a global solution.
Note one needs to treat the “large” jumps of the X, L per hand.
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Note: There exists a linear 2-dim. RDE reflected at L = 0 with infinitely
many solutions, see Gassiat '20.

Consider the one-dimensional reflected RDE
ot
Y, =y + / FY)dX. + Key te[o, T, (3)
Jo

such that Y; > L; and (b) hold.

Theorem (Allan, Liu, P. '20)

Let f € C3, p€[2,3), X = (X,X) be a cadlag p-rough path,

Le DP([0, T;R) and y € R with y > Ly.

There exists at most one solution (Y, Y’ K), with Y' = f(Y), to the
one-dimensional reflected RDE (3).
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Related works for continuous rough path:
e [ = 0: Deya, Gubinelli, Hofmanova & Tindel '19
e L with joint rough path (X, L): Richard, Tanre & Torres '19

Both works rely on a rough Gronwall’s inequality from Deya, Gubinelli,
Hofmanova & Tindel '19.

We proof of uniqueness by contradiction:
e Assume there two solutions Y, ¥ s.t. Y, # Y, for some a € (0, T].
e W.lo.g. 0 is the last time when they are equal.

Case 1. There exists t > 0s.t. [0,t] 35 — Ks — K, is monotone.
Then
1K = Kllg 10, = 1K = Kllp.jo,e1

which is precisely what we need for a contraction argument.
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Case 2. Otherwise: [0,t] 5 5 — Ks — K, is oscillating for every t > 0.
= Y, Y must hit the barrier infinitely many times immediately after 0.

= Y, Y either meet or jump over each other infinitely many times.

In both cases we obtain a contradiction.

Note: the contraction argument extends to the multidimensional case.

In this case, if uniqueness is lost, then both solutions Y/, Y must hit the
barrier infinitely many times immediately afterwards.

Indeed, this is exactly what happens in Gassiat's example.
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e reflected Young differential equations: existence, uniqueness, stability
e existence for reflected rough differential equations

e uniqueness for reflected one-dimensional RDEs
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Thank you very much for your attention!

Reference:

[4 Allan, A. L., Liu, C., and Prémel, D. J. (2020).
Cadlag Rough Differential Equations with Reflecting Barriers.
Preprint arXiv:2008.00794.

David Promel — University of Mannheim

25



	Reflected Young differential equations
	Reflected RDE - Existence
	Reflected RDE - Uniqueness
	Conclusion

