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The optimal stopping problem

Goal: For a given càdlàg stochastic process Y : [0, T ]→ R, adapted to some right-continuous

filtration (Ft ), determine

sup
τ∈S[0,T ]

E[Yτ ]

where the supremum ranges over all (Ft )-stopping times τ with values in [0, T ].

Motivation: Interesting in its own right, but also fundamental in pricing for American(-style) options

on financial (or other) markets (Bensoussan ’84, Karatzas ’88).
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Closed-form solution1

Define

Z∗t = ess sup
τ∈S[t,T ]

E(Yτ | Ft ).

One can prove that Z∗ is the Snell envelope of Y , i.e. Z∗ is the minimal right-continuous

supermartingale that majorizes Yt . Moreover, the stopping times

ρt := inf{t ≤ s ≤ T : Z∗s = Ys}, t ∈ [0, T ]

satisfy

sup
τ∈S[t,T ]

E(Yτ ) = E(Yρt ).

In particular, ρ0 solves the optimal stopping problem. However, this solution is of little use in

practice. Calculating Z∗0 efficiently is a challenging problem, which has attracted many researchers’

attention, and which is still actively studied (many (!!!) references missing...).

1 ...goes back to Fakeev ’70, Bismut-Skalli ’77.
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Remark. If Ft = σ(Xs : 0 ≤ s ≤ t), the solution of the optimal stopping problem depends on the

law of the process (Y , X). The law of a stochastic process is uniquely determined by its expected

signature. Therefore, the optimal stopping problem should have a reformulation in terms of the

signature of a stochastic process.

Notation.

– X denotes a continuous, geometric, and random p-rough path defined on [0, T ].

– X̂ denotes the rough path X where we add time t 7→ t as the first component to the

underlying path X .

– X̂<∞ denotes the signature of X̂, i.e. the collection of all (formal) iterated integrals with

values in the extended tensor algebra T((R1+d )), the dual of the tensor algebra T(R1+d ).

Our setting. Assume Ft = σ(X̂|[0,s] : 0 ≤ s ≤ t) and that Y : [0, T ]→ R is (Ft )-adapted and

continuous. We aim to calculate

sup
τ∈S[0,T ]

E[Yτ ].
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Let Ω̂p
t denote a separable rough path space where X̂ restricted to [0, t] ⊂ [0, T ] takes its values.

The space of stopped rough paths is defined as

ΛT :=
⋃

t∈[0,T ]

Ω̂p
t .

It can be seen that ΛT is Polish2.

Definition

(i) We set T := C(ΛT ,R) and call it the space of continuous stopping policies.

(ii) Let Z be a strictly positive random variable independent of X. For θ ∈ T , we define the

randomized stopping time

τ r
θ := inf

{
t ≥ 0 :

∫ t∧T

0

θ(X̂|[0,s])
2 ds ≥ Z

}
(inf ∅ := +∞).

2ΛT is a rough paths version of a space considered in [Dupire; 2009]. For rough paths, the space was first used in [Kalsi,
Lyons, Perez Arribas; 2020].
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Proposition

Assume E[supt∈[0,T ] |Yt |] <∞. Then

sup
θ∈T

E[Yτ r
θ
∧T ] = sup

τ∈S[0,T ]

E[Yτ ].

Proof.

– Let τ ∈ S[0, T ]. From the Doob-Dynkin lemma (and some further work), there exists a Borel

measurable θ : ΛT → {0, 1} such that

θ(X̂|[0,t]) = 1{τ≤t}.

– From Lusin’s Theorem, we can find θ̃n ∈ T , 0 ≤ θ̃n ≤ 1, such that θ̃n(X̂|[0,t])→ 1{τ≤t}

almost surely w.r.t. λ|[0,T ] ⊗ P.
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Proof.

– Setting θn := (2θ̃n)n gives

lim
n→∞

θn(X̂|[0,t])→

{
+∞ if t ≥ τ,
0 if t < τ.

Therefore, τ r
θn
→ τ a.s. as n→∞ and

sup
θ∈T

E[Yτ r
θ
∧T ] ≥ sup

τ∈S[0,T ]

E[Yτ ],

using Lebesgue’s dominated convergence theorem.
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The shuffle product

– The basis elements ei1 ⊗ · · · ⊗ ein in the tensor algebra T(R1+d ) can be identified with the

words i1 · · · in composed by the letters 1, . . . , 1 + d .

– For two words u and v , we can consider the shuffle product u� v ∈ T(R1+d ). For example,

12� 3 = 123 + 132 + 312,

12� 24 = 2 · 1224 + 1242 + 2124 + 2142 + 2412.

– � can be bilinearly extended to define l1 � l2 for every element l1, l2 ∈ T(Rd ).
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Definition

Let Z be a strictly positive random variable independent of X. For l ∈ T(R1+d ), we define the

randomized signature stopping time

τ r
l := inf

{
t ≥ 0 :

∫ t∧T

0

〈l, X̂<∞0,s 〉2 ds ≥ Z

}
.
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Lemma (Kalsi, Lyons, Perez Arribas ’20)

Let µ be a probability measure on (Ω̂p
T ,B(Ω̂p

T )). Then, for every ε > 0, there is a compact set

K ⊂ Ω̂p
T such that:

1. µ(K) > 1− ε.

2. For every θ ∈ T there is a sequence ln ∈ T(R1+d ) such that

sup
X̂∈K; t∈[0,T ]

|〈ln, X̂<∞0,t 〉 − θ(X̂|[0,t])| → 0

as n→∞.

Proof.

Stone-Weierstraß. To prove that Tsig separates points, one needs the uniqueness result for the

signature of a rough path proved in [Boedihardjo, Geng, Lyons, Yang; 2016].
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Note: Convergence of the stopping policies does not imply convergence of the stopping times!

Indeed, for ϑ, ϑn : [0, 3]→ [0,∞) defined by

ϑ(t) =


1− t if t ∈ [0, 1]

0 if t ∈ [1, 2]

t − 2 if t ∈ [2, 3]

and ϑn(t) =


(1− 1

n )(1− t) if t ∈ [0, 1]

0 if t ∈ [1, 2]

t − 2 if t ∈ [2, 3].

we have ϑn → ϑ as n→∞, but

inf

{
t ≥ 0 :

∫ t∧3

0

ϑ(s) ds ≥ 1

2

}
= 1 and

inf

{
t ≥ 0 :

∫ t∧3

0

ϑn(s) ds ≥ 1

2

}
> 2

for all n ≥ 1.
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Lemma

Let FZ denote the cumulative distribution function of Z . Then

E(Yτθ∧T | X̂) =

∫ T

0

Yt dF̃(t) + YT (1− F̃(T)) =

∫ T

0

(1− F̃(t))dYt + Y0

where the second integral is a Young integral and

F̃(t) = FZ

(∫ t

0

θ(X̂|[0,s])
2 ds

)
.

In particular, if Z has a density %,

E(Yτθ∧T ) = E
[∫ T

0

Ytθ(X̂|[0,t])2%

(∫ t

0

θ(X̂|[0,s])
2 ds

)
dt + YT (1− F̃(T))

]
.
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Proposition

Assume that Z has continuous density %. Then

sup
θ∈T

E(Yτ r
θ
∧T ) = sup

l∈T(R1+d )

E(Yτ r
l ∧T ).

Definition

For l ∈ T(R1+d ), we define the signature stopping time

τl := inf
{

t ≥ 0 : 〈l, X̂<∞0,t 〉 ≥ 1
}
.

Remark. Signature stopping times are hitting times of affine hyperplanes in
⊕∞

n=1(R1+d )⊗n of the

process

t 7→ (X̂(1)
0,t , X̂

(2)
0,t , . . .) ∈

∞∏
n=1

(R1+d )⊗n.
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Theorem (Bayer, Hager, R., Schoenmakers)

Assume that Z has a continuous density and that E[supt∈[0,T ] |Yt |] <∞. Then

sup
τ∈S[0,T ]

E[Yτ ] = sup
θ∈T

E[Yτ r
θ

] = sup
l∈T(R1+d )

E[Yτ r
l
] = sup

l∈T(R1+d )

E[Yτl ].

Remark. If X is a Markov process in Rd and Yt = G(t, Xt ) for a continuous function G, it is a

classical result that

sup
τ∈S[0,T ]

E[Yτ ] = sup
τ∈D

E[Yτ∧T ]

where D denotes the set of all hitting times of closed sets in R1+d of the process t 7→ (t, Xt ).
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The following conclusion can be deduced from our former results:

Corollary

If Z ∼ Exp(1) and Y0 = 0,

sup
τ∈S[0,T ]

E[Yτ ] = sup
l∈T(R1+d )

E
[∫ T

0

exp

(
−
∫ t

0

〈l, X̂<∞0,s 〉2 ds

)
dYt

]
.
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Full linearisation

Assume that Y is the second component of X . Fix l ∈ T(R1+d ). Then

E
[∫ T

0

exp

(
−
∫ t

0

〈l, X̂<∞0,s 〉2 ds

)
dYt

]
= E

[∫ T

0

exp

(
−
∫ t

0

〈l � l, X̂<∞0,s 〉 ds

)
dYt

]

= E
[∫ T

0

exp
(
−〈(l � l)1, X̂<∞0,t 〉

)
dYt

]
?
= E

[∫ T

0

〈exp�(−(l � l)1), X̂<∞0,t 〉 dYt

]
= E

[
〈exp�(−(l � l)1)2, X̂<∞0,T 〉

]
= 〈exp�(−(l � l)1)2,E[X̂<∞0,T ]〉.
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Theorem (Bayer, Hager, R., Schoenmakers)

For κ > 0, define

S = Sκ = inf{t ≥ 0 : ‖X̂‖p−var;[0,t] ≥ κ} ∧ T .

Then

sup
τ∈S[0,T ]

E[Yτ ] = lim
κ→∞

lim
K→∞

lim
N→∞

sup
|l|+deg(l)≤K

〈exp�(−(l � l)1)2,E[X̂≤N
0,S ]〉

where

exp�(l) =
∞∑

n=0

l�n

n!
.

Remark. Nice approach, but does not prove itself in practice, unfortunately.
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Partial linearisation - Direct Monte-Carlo approach

Idea: Discretize

E
[∫ T

0

exp

(
−
∫ t

0

〈l, X̂<∞0,s 〉2 ds

)
dYt

]
in time and use a direct Monte-Carlo approach together with gradient descent to approximate l .

Example: Stopping a fractional Brownian motion3:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H

0.0

0.2

0.4

0.6

0.8

1.0

Optimal Stopping of a FBM - Lower Bounds
BCJ
deg(l) = 2
deg(l) = 3
deg(l) = 4
deg(l) = 5
deg(l) = 6
deg(l) = 7

3

Benchmark: [Becker, Cheridito, Jentzen; Deep optimal stopping; JMLR 2019].
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Nonlinear approximation with neural networks

Corollary

sup
τ∈S[0,T ]

E[Yτ ] = sup
θ

E
[∫ T

0

exp

(
−
∫ t

0

θ(log⊗ X̂<∞0,s )2 ds

)
dYt

]
.

where the supremum is taken over all continuous functions defined on the log-signature.

To approximate θ, we use a neural network with

ReLU activation function, 2 hidden layers, and

µN + 20 neurons on each layer where µN is the

dimensionality of the truncated log-signature of

level N.

0.2 0.4 0.6 0.8 1.0
H

0.0

0.2

0.4

0.6

0.8

1.0

Optimal Stopping of an FBM - Lower Bounds

BCJ
N = 1
N = 2
N = 3
N = 4
N = 5
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Thank you.
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