Conference Pathwise Stochastic Analysis and Applications CIRM (Marseille, France) — March 8-12, 2021 Organized by GdR TRAG (INSMI-CNRS)

Felix Otto (MPI Leipzig)

The structure group revisited

Following the treatment of a class of quasi-linear SPDE with Sauer, Smith, and Weber, we approach Hairer's regularity structure (A, T, G) from a different angle. In this approach, the model space T is a direct sum over an index set that corresponds to specific linear combination of (decorated) trees, and thus amounts to a more parsimonious parameterization of the solution manifold. Moreover, the same structure group G captures different classes of equations; depending on the class, different (sub)spaces T matter, which correspond to linear combinations of different types of trees.

In our approach to G, we start from the space of tuples (a, p) of (polynomial) nonlinearities a and space-time polynomials p, which we think of parameterizing the entire manifold of solutions u (satisfying the equation up to space-time polynomials) via re-centering. We consider the actions of a shift by a space-time vector $h \in \mathbb{R}^{d+1}$ and of tilt by space-time polynomial q on (a, p)-space, where, crucially, the tilt by a constant is treated as a shift of the (one-dimensional) u-space. We consider the infinitesimal generators of these actions, and pull them back as derivations on the algebra of formal power series $\mathbb{R}[[\mathbf{z}_k, \mathbf{z}_n]]$ in the natural coordinates $\{\mathbf{z}_k\}_{k\in\mathbb{N}_0}$ and $\{\mathbf{z}_n\}_{\mathbf{n}\in\mathbb{N}_0^{d+1}-\{\mathbf{0}\}}$ of (a, p)-space. This defines a Lie algebra $\mathsf{L} \subset \operatorname{Der}(\mathbb{R}[[\mathbf{z}_k, \mathbf{z}_n]])$. Loosely speaking, the corresponding Lie group coincides with G^* , but we follow an algebraic path to construct G .

As a group, $G \subset (T^+)^*$ arises in the standard way from the Hopf algebra T^+ that is obtained from dualizing the universal enveloping algebra U(L). Here, gradedness and finiteness properties are needed for the well-posedness of the co-product $\Delta^+ : T^+ \to T^+ \otimes T^+$ and the antipode. The passage from $\mathbb{R}[[z_k, z_n]]$ to a smaller (linear) subspace T^* is needed for dualizing the module defined through $L \subset \operatorname{End}(T^*)$ to obtain the co-module $\Delta : T \to T^+ \otimes T$. This yields the representation $G \subset \operatorname{End}(T)$. Both Δ and Δ^+ satisfy the postulates of regularity structures, in particular the properties that intertwine Δ , Δ^+ , and the family of re-centering maps $\mathcal{J}_n : T \to T^+$. The latter relies on choosing a natural basis of U(L), different from the standard Poincaré-Birkhoff-Witt basis, for dualization.

This is joint work with P. Linares and M. Tempelmayr.