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@ Motivation and Objective
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Time series generation

@ Paper: Conditional Sig-Wasserstein GANs for Time Series
Generation.

@ Joint work with Lukasz Szpruch, Shujian Liao, Magnus Wiese and
Baoren Xiao.

@ Code are available at GitHub: https://github.com/
SigCGANs/Conditional-Sig-Wasserstein-GANs.git

@ to build a high-quality conditional generative model for time series
generation to better capture the heterogeneity of time series Xi.7.

@ to improve the performance and training stability of the
Wasserstein Generative Adversarial Networks using the signature
of the path.
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Conditional Generative Model for Time Series

To model the joint distribution of X[; 7 effectively, we aim to learn the
conditional distribution P(X; e Xt past) from data.
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Figure: An example of 4-dimensional financial time series composed of the
price and realized volatlity of SPX and DJI from 2005-01-01 to 2018-12-31.
The blue region represents the past time series and the yellow region
represents the future time series.
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Wasserstein Generative Adversarial Networks

Wasserstein-1 metric (W)

Let p, v € Prob(&X") with a compact support K. The Kantorovich and
Rubinstein dual representation of Wasserstein-1 metric is given by

Wip,v)=  sup By [f0] - By [fX)].
continuous f:X—R,Lip(f)<1

Wasserstein Generative Adversarial Networks (WGAN)
@ Given samples (X)X sampled from the true distribution p*(X).
@ Latent variable Z: a Z-valued random variable.
@ Goal: To train a model such that forgyg : Z x © — X so as to

min| maxElfo(gs(2))] — Bxwpr falX)] |
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The signature of a path

Definition (Signature of a path)

Let X denote a R%-valued path of bounded 1-variation. The signature of
the path X is defined as S(X;) = (1,X%,--- , X&,---) € T((RY)), where
Xk:/ dth ®"'®dek. (@B
h<ta<---<ty,t1,-- [ E€J

Sm(X3) = (1,X%,- -+ X&) is the truncated signature up to degree M.

Embedding time series to the path space

@ There are different ways to embed time series to the path space.

@ In our work, we choose to embed discrete time series X to a time
jointed path as defined in [1] as this embedding ensures the
uniqueness of the signature.
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The signature of a path

Time series

¢

[1, 9.09909910e-01 -5.03028337¢-02 4.13968022e-
01-3.60339201¢-01 3.14568154e-01 1.26518754e-03
1.25557869e-01 -1.96494839€-01 6.51134671e-02
1.09885781e-01 1.10557607e-01 -2.01645480e-01
9.29109052¢-02 2.12141728e-05]
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The signature of a path

@ is a graded infinite series to
summarize the path (time
series) faithfully.

@ is a universal basis for
continuous functions on the
path space.[2]

ESig, Signatory[3] and iisignature[4]
are three Python libraries for signa-
ture computation.
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The Signature Wasserstein-1 metric (Sig-W,)

We propose to define the truncated Signature Wasserstein-1 metric
(Sig-W1) up to degree M as follows:

Sig-WA"™ (4, ) = [Bu[Sm(X)] — B [Su(X)]], )

where p and v are two measures on the path space and |.| is [, norm.

Wimv)=  sup By [ f) 1Byl f) .
continuous f:X—R,Lip(f)<1 ~~

\

In [5], if one chooses the truncated signature up to degree M as the
feature map, then the corresponding Maximum Mean Discrepancy

(Sig-MMD) is the square of Sig- MM) (p, v).
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© The Signature-based Conditional WGAN (SigCWGAN)
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The Signature-based Conditional WGAN (SigCWGAN)

@ We assume that a R%-valued time series (X;)|_, satisfies

Xit1 = [(Xi—p+1:t) + €t

where Elezy1|Fi] = 0, Ft is the information up to time t and
f:RP*d — RYjs a continuous but unknown function.

@ The objective of SigCWGAN is to generate synthetic time series
whose condition distribution is as close as to the joint distribution
of Xfuture = Xt+1:0+9 given the past time series Xpast = Xi—p41:¢-

The Conditional AR-FNN Generator

Given X;_p1., estimate the next step Xﬁzl = 8o(Xt_pt1.1,Ze11). Then use Xﬁfl
to generate the step-2 estimator by 5(522 = gg(Xt_p+2;j,)A(§21,Zt+2) and

repeating this procedure until obtaining the step-q estimator 5(}21:,+q.
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Conditional Sig-WW; Discriminator

We define the truncated conditional Signature Wasserstein-1 metric of
degree M denoted by C—Sig—WgM) on u and v as follow:

C-Sig-WA™ (11, v|Xpast = X) := [Eu[Sm(Xtuture ) Xpast = X] — o [Sv (Xiuture) [Xpast = X1 |-

Loss function

L(B) = Z ’E“[SM(XT‘HZH'CI)’XT—P-H:T] - EV[SM(S(ISEZLHQ)’Xt—p-&-l:t”,
t

where v and p denote the conditional distribution induced by the real

data and synthetic generator respectively, g is the generator, 5(§21:r+q
is the g-step forecast generated by gp.
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SigCWGAN Algorithm

ZS(Xt7p+1:t)

Figure: The illustration of the flowchart of SigCWGAN.
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Conditional WGAN vs Conditional SigWGAN

Challenges of the conditional WGAN

C'Wl (,Ua V|Xpast) = |fH|13><(1 EuUa(Xfuture)‘Xpast] - Ey[fa(Xfuture)‘Xpast]-
allip>

The estimator for E,, [fo (Xtuture )| Xpast = Xt—p:t] has two choices:

® fo(Xt+1:t+q) (NOiSy estimator). Under the true measure g, given

Xpast = Xt—p:t, it is very likely that there is only one corresponding
sample of the future path.

@ Regress (Xt_p:t,fa(xtH:Hq));jr‘l’ to obtain the estimator for the
conditional expectation (heavy computation).
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C-Sig-WGAN

@ By embedding time series to the signature space, the conditional
W1 metric can be approximated by

C-Sig-WA" (11, ) = [EL[Su(X)Xpast] — By [S(X)Xpast]] (3)

where p and v are two measures on the path space and |.| is l2
norm.
No optimisation needed.

@ We add the supervised learning module to learn E,,[Spm(X)|Xpast],
which is one-off and can be done prior to the GAN learning as Sy is
the deterministic mapping.
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@ Numerical Results
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Experiment Setup

@ Synthetic Data: Vector Autoregressive model;
@ Empirical Data: multi-dimensional time series of both the log

return of the close prices and the log of median realised volatility
of (a) the SPX only; (b) the SPX and DJI. @

Tt is retrieved from the Oxford-Man Institute’s “realised library”[6].

EENINES

To benchmark with SigCWGAN, we choose three representative
generative models for the time-series generation, i.e.

@ TimeGAN [7];
@ RCGAN [8];
© GMMN [9].
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Test Metrics

We consider three main criteria:
(@) the marginal distribution of time series;
(b) the temporal and feature dependence;

(c) usefulness[7] - synthetic data should be as useful as the real data
when used for the same predictive purposes (i.e.
train-on-synthetic, test-on-real(TSTR), train-on-real,
test-on-real(TRTR)).
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Figure: (Upper panel) Evolution of the training loss functions. (Lower panel)
Evolution of the ACF scores. Each colour represents the ACF score of one
dimension. Results are for the 3-dimensional VAR(1) model for ¢ = 0.8 and
oc=0.8.




SPX log-return SPX log-vol DJi log-return DJl log-vol

Historical 05 Historical o7 Historical Historical
07 Generated Generated Generated Generated
06
s 0s 04
05
05 s
03 04
go4 g ' g
03 02 03 02
02 02
01 01
01 01
00 00 00 " 00
4 o2 0 2 4 -2 0 2 4 6 4 -2 0o 2 a4 & -2 1) 2 4

Figure: Comparison of the marginal distributions of the generated SigCWGAN
paths and the SPX and DJI data.

Metrics | marginal distribution || auto-correlation || correlation [ R%%) | Sig-W,

SigCWGAN | 0.01730,0.01674 || 0.01342,0.01192 | 0.01079, 0.07435 || 2.996,7.948 || 0.18448, 4.36744

TimeGAN | 0.02155,0.02127 || 0.05792,0.03035 || 0.12363,0.61488 || 5.955,8.586 || 0.58541,5.99482

RCGAN 0.02094, 0.01655 || 0.03362,0.04075 || 0.04606,0.15353 || 2.788,7.190 || 0.47107, 5.43254

\
GMMN | 0.01608,0.02387 | 0,01283,0.02676 | 0.04651,0.22380 || 9.049,7.384 || 0.59073, 6.23777

Table: Numerical results of the stock datasets. In each cell, the left/right number are the result for the SPX data/ the SPX and
DJI data respectively. We use the relative error of TSTR R? against TRTR R2 as the R? metric.
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