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The empirical occupation measure of a Brownian path

/fd,ur - /OTf(B,)dr

is quite common, for example
m in regularization by noise (Gubinelli, Catellier...): a key tool is that

.
X H/ F(x + By)at
0

is more regular than f itself (small T’s here are relevant).

m in the study of covering times (Aldous, Dembo-Peres-Rosen-Zeitouni):
how large should T be so that

supp(ut) is e-close to every point

(considering a Brownian motion on the torus T¢)
Question: what happens if we consider a fractional Brownian motion?



Simulations: H
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As a variant of the covering time problem we can measure an average
distance using the Kantorovich-Wasserstein optimal transport distance:

W(ur, TE8) =inf [ distea(x.p)dm(x. ),
Td % Td

™

where 7 are joint measures such that the marginals are respectively 7 and
TLY,

The dual formulation reads

Wi(ur, TLS) = sup {/ (Bo)as—T | fy )dy},

Lip(f

i.e., we measure how close Llpschltz functions are to constants after
averaging w.r.t. the occupation measure.

Problem
Estimate Wi (ur, TL%) as T — co.



The random Euclidean bipartite matching problem

Another motivation is to study a variant of the random Euclidean bipartite
matching problem, that reads: let n be i.i.d. uniformly distributed points
(X)), on T% and

T n
replace pur = / dg,dt  with the empirical measure  vo = » _ x,.
0

i=1
Intuition: the typical distance is na (as in a regular grid).
But there are fluctuations (CLT)!
The asymptotic behaviour of Wi (v, nL‘j‘;d) depends on the dimension d:

n-n2 ford =1

Wi (vn, nLSG) ~ n-\/ &% ford=2

n-nd for d > 3.

An open problem is to prove that the limit (after rescaling) exists for d = 2.



Related literature: the diffusion case

F.Y. Wang and J-X. Zhu (2019) consider diffusion processes on Riemannian
Manifolds (thus including the case H = 1/2 on the torus).

Their main result is (actually for the W distance)

T-T":  ford<3
Wi(ur, TL) ~ S T/ 6T ford =4
T.T-@2 ford>5.

Intuition:
m supp p7 is (roughly) 2-dimensional
m put n°2 horizontal planes in T¢ gives a distance of order !
m each plane has measure (area) 1, thus n° 2 =T

m typical distance is ~ T‘ﬁ,

But again there are fluctuations!



Our result

For H € (0, 1) a fBM with Hurst index H on T¢ is constructed as

d independent real fBM (B}, B?, ..., BY)1>o projected on T? = R?/z°.

Theorem (Huesmann, Mattesini, T.)

Let H € (0,1), consider a fBM with Hurst index H on T° with empirical
measure ur. Then,

T-T2 ford < % +2

d o|
IE[WM/N,TLZW)]N Tw/% ford= 1 +2
T-T &7 ford> % +2.

Notice that (formally) H = oo gives back the bipartite matching problem!



Some open problems

Comparison with the random bipartite matching problems leads to the
following questions (that we have not addressed).

Limits. For d < 1p + 2 it should be not difficult to prove that
lim & [W1 (i, T.cg;’d)] VT exists.

If d > 1, + 2 it may be feasible.
Ford = 1? + 2 it should be challenging (open also for the matching
problem).

Rates for W, instead of W. In fact our proof covers p € [1, 4] (with same
rate). Higher p’s require more computational effort or better ideas?
The case p = oo is related to covering times.
The case p € (0, 1) may also be interesting.

Case H = 1. Pick a random direction (with random velocity) and follow
the geodesics. The case d = 3 is open (not clear if the logarithm must
be there)



Sketch of proof

We follow an established route for the bipartite matching problem — first
proposed by S. Caracciolo and collaborators.

We combine tools from analysis and probability:
Optimal Transport Theory and PDE’s
Fourier analysis
Gaussian processes

The main novelty are (fourth order) moment bounds on the Fourier transform
of the occupation measure

;
ar(m) = / exp (2wim - Bs) ds.
0



Optimal transport bounds

The Wasserstein distance between two measures p, v on the line R can be
computed via cumulative distribution functions (Dall’Aglio):

Wi(p,v) = /_ﬁo |F..(t) — F,(t)|dt.

Are there similar expressions (or at least bounds) for d > 1?

Lemma

Given two measures (with smooth densities) ., v on T9, one has the upper
bound

Wi (s, v) < / VAT ()|

and the lower bound

1 _ C _
Wi () > sup {M/T VAT -0 - 5 [, 198 1(u—u)|“},

M>0

where C > 0 is a constant depending on d only.



Problem: we cannot apply the bounds to a singular measure, e.g. u = ur,
they may produce diverging quantities.

We introduce a smoothing operator — the heat semigroup P u. Key
inequalities
Wi (p, Pepp) < Cv/Ep(T?),  with C = C(d),

and
W1(M7V) 2 VV1(PE,U’7 PEV)'
Lemma
Upper bound:
Wi (ur, TL) < inf c\/5T+/ VAP (ur — T)]
e Td
and lower bound:

Wi (ur, TLSa)

1 B _
> sup {0 [ AT lur = - i [ v Pur - Tt

M,e>0

where C > 0 is a constant depending on d only.



Some Fourier Analysis

To conveniently bound the terms [, [VA™' P (1 — v)|? we use Fourier
series. We use the isometry

[ = % fime

mezd
as well as
Jie= S HmoHmHm)i(me)
my+my+ms+my=0
We obtain
~ 2
AP, NP = *5"”'27|“(m)|.
2SR DI
mezd\ {0}
and

4
_ mi o imp
/m VAT Po(p = 1)[* = Z H |millze ™ ()

my+mo+mz+my=0 i=1
m;#0



Moment bounds

So far everything was valid for a general path in T¢. Probability enters when
we take expectations. We have

T T
i (m) 2 :/0 /0 exp (2mim(Bs, — By, ) ds1 dsz

and

Aar(m)pr(me)fir(ms)fir(ms) =
T T T T 4

:/ / / / exp 27szijsj ds;ds,ds;ds,
0 0 0 0 e

Exchanging expectations and integrals we find explicit formulas, e.g., for the
second moment

E [exp (2mim(Bs, — Bs,))] = exp (—2r°|mi’|sz — s1*")



Upper bound

We find
T T 2 2 2H
:/ / exp(—27r imp?|sz — s1 )ds1d32~ _.
o Jo m\ﬁ
Thus
—e|m|? T
i mezd\ {0}
ford < ; +2
S T4 |log(e)l ford:lH+2
1/\/gd—2—1/H

ford > % +2.
Taking expectation in the upper bound

1/2
E [W1(MT, Tﬁ%d)] <inf CVeT +E [/ VAT P.(ur = T)|

e>0 Td

We conclude choosing

ford < ; +2
ford= L +2

ford > 4 + 2.



Taking expectation in the lower bound we have

E [ Wi (ur, TL3)]

1 _
> sup {4 | [ v Pur = 1| - me | [ 19a7 P - D]},
M,e>0 Td
Assume that for some constant C > 0, we have a reverse Holder inequality
2
B| [, 987 P - DY) < B[ [ 1987 PGur - TIF]
Td Td
then choosing
1/2
M = KE U VAP (ur — T)|2}
Td
for some constant K > 0 (large but fixed) we have
271 C
d —1 2
B (Wi Tel)] 25 [ [ Va7 - T (5 - )

We conclude e.g. if e = ¢(T) is chosen as in the upper bound.



Fourth moment estimates

To prove

2
B| [, Va7 P - DY) < e | [ 1987 PGur - TIF]
Td Td

we use lower bounds on the spectrum of the 3 x 3 covariance matrix for
increments of fBM.

Cases:
H = 1/2: the matrix is diagonal
H < 1/2: diagonally dominant
H > 1/2: we use represent fBM as stochastic integral. Bounds look like

4
E [H ﬂr(m,-)} ST > (millmi+ myimi + my+ my]) ="
i=1 {i,j,k}C{1,2,3,4}

and then we use Young convolution inequality to bound the resulting series.
Is there a simpler proof?

Also FY. Wang needs to estimate higher order moments: his proof uses
Markov property and heat kernel estimates (still very demanding).



A possible strategy via It6 trick

For H = 1/2 (and assuming stationarity) we can use the 16 trick to estimate

p

E /TVA_1PE(60 —1)(Bs)

Write It6 formula
T T
1(8r) ~ 1(8) ~ | vi(B)dB. =} [ aB)os
0 0

Set g = Af (g must have zero integral on T9) so that

;
/gdw =2 (A‘1g(BT) — A "'g(By) — / VA‘1g(Bs)dBS> .
0
Take p = 2%, use BDG inequality

E H/Qdur ’ ,,/2] ,

and iterate (but each time subtract the spatial average). For p = 2 it gives

‘/Qdur

T 2
/0 ‘VA‘1g‘ (Bs)ds

] <E [|A‘1g(Bo)\"] +E

E

2] <E [|A’1g(Bo)|2} +TE Um*‘g‘z (Bo)} .



Conclusion

We proved upper and lower bounds for the W; distance between a
fractional Brownian path and the uniform measure (on T).
A transition between different rates occurs at
1

d=2+n.

Many open problems, e.g., existence of limits (possibly for W, instead)

Connections with regularization by noise or covering times should be
better investigated.



