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Motivation

The empirical occupation measure of a Brownian path∫
fdµT =

∫ T

0
f (Bt )dt

is quite common, for example

in regularization by noise (Gubinelli, Catellier. . . ): a key tool is that

x 7→
∫ T

0
f (x + Bt )dt

is more regular than f itself (small T ’s here are relevant).

in the study of covering times (Aldous, Dembo-Peres-Rosen-Zeitouni):
how large should T be so that

supp(µT ) is ε-close to every point

(considering a Brownian motion on the torus Td )

Question: what happens if we consider a fractional Brownian motion?



Simulations: H=0.5, T=1
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Simulations: H=0.7, T=5
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Simulations: H=0.9, T=10
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As a variant of the covering time problem we can measure an average
distance using the Kantorovich-Wasserstein optimal transport distance:

W1(µT ,TLd
Td ) = inf

π

∫
Td×Td

distTd (x , y)dπ(x , y),

where π are joint measures such that the marginals are respectively µT and
TLd

Td .

The dual formulation reads

W1(µT ,TLd
Td ) = sup

Lip(f )≤1

{∫ T

0
f (Bs)ds − T

∫
Td

f (y)dy
}
,

i.e., we measure how close Lipschitz functions are to constants after
averaging w.r.t. the occupation measure.

Problem
Estimate W1(µT ,TLd

Td ) as T →∞.



The random Euclidean bipartite matching problem

Another motivation is to study a variant of the random Euclidean bipartite
matching problem, that reads: let n be i.i.d. uniformly distributed points
(Xi )

n
i=1 on Td and

replace µT =

∫ T

0
δBt dt with the empirical measure νn =

n∑
i=1

δXi .

Intuition: the typical distance is n−
1
d (as in a regular grid).

But there are fluctuations (CLT)!

The asymptotic behaviour of W1(νn, nLd
Td ) depends on the dimension d :

W1(νn, nLd
Td ) ∼


n · n−

1
2 for d = 1

n ·
√

log n
n for d = 2

n · n−
1
d for d ≥ 3.

An open problem is to prove that the limit (after rescaling) exists for d = 2.



Related literature: the diffusion case

F.Y. Wang and J-X. Zhu (2019) consider diffusion processes on Riemannian
Manifolds (thus including the case H = 1/2 on the torus).

Their main result is (actually for the W2 distance)

W1(µT ,TLd
Td ) ∼


T · T−

1
2 for d ≤ 3

T ·
√

log T
T for d = 4

T · T−
1

d−2 for d ≥ 5.

Intuition:

suppµT is (roughly) 2-dimensional

put nd−2 horizontal planes in Td gives a distance of order 1
n

each plane has measure (area) 1, thus nd−2 = T

typical distance is ∼ T−
1

d−2 ,

But again there are fluctuations!



Our result

For H ∈ (0, 1) a fBM with Hurst index H on Td is constructed as

d independent real fBM (B1
t ,B

2
t , . . . ,B

d
t )t≥0 projected on Td = Rd/Zd .

Theorem (Huesmann, Mattesini, T.)

Let H ∈ (0, 1), consider a fBM with Hurst index H on Td with empirical
measure µT . Then,

E
[
W1(µT ,TLd

Td )
]
∼


T · T−

1
2 for d < 1

H + 2

T ·
√

log T
T for d = 1

H + 2

T · T−
1

d−1/H for d > 1
H + 2.

Notice that (formally) H =∞ gives back the bipartite matching problem!



Some open problems

Comparison with the random bipartite matching problems leads to the
following questions (that we have not addressed).

1 Limits. For d < 1
H + 2 it should be not difficult to prove that

lim
T→∞

E
[
W1(µT ,TLd

Td )
]
/
√

T exists.

If d > 1
H + 2 it may be feasible.

For d = 1
H + 2 it should be challenging (open also for the matching

problem).

2 Rates for Wp instead of W1. In fact our proof covers p ∈ [1, 4] (with same
rate). Higher p’s require more computational effort or better ideas?
The case p =∞ is related to covering times.
The case p ∈ (0, 1) may also be interesting.

3 Case H = 1. Pick a random direction (with random velocity) and follow
the geodesics. The case d = 3 is open (not clear if the logarithm must
be there)



Sketch of proof

We follow an established route for the bipartite matching problem – first
proposed by S. Caracciolo and collaborators.

We combine tools from analysis and probability:

1 Optimal Transport Theory and PDE’s

2 Fourier analysis

3 Gaussian processes

The main novelty are (fourth order) moment bounds on the Fourier transform
of the occupation measure

µ̂T (m) =

∫ T

0
exp (2πim · Bs) ds.



Optimal transport bounds

The Wasserstein distance between two measures µ, ν on the line R can be
computed via cumulative distribution functions (Dall’Aglio):

W1(µ, ν) =

∫ +∞

−∞
|Fµ(t)− Fν(t)|dt .

Are there similar expressions (or at least bounds) for d > 1?

Lemma
Given two measures (with smooth densities) µ, ν on Td , one has the upper
bound

W1(µ, ν) ≤
∫
Td
|∇∆−1(µ− ν)|

and the lower bound

W1(µ, ν) ≥ sup
M>0

{
1
M

∫
Td
|∇∆−1(µ− ν)|2 − C

M3

∫
Td
|∇∆−1(µ− ν)|4

}
,

where C > 0 is a constant depending on d only.



Problem: we cannot apply the bounds to a singular measure, e.g. µ = µT ,
they may produce diverging quantities.

We introduce a smoothing operator→ the heat semigroup Pεµ. Key
inequalities

W1(µ,Pεµ) ≤ C
√
εµ(Td ), with C = C(d),

and
W1(µ, ν) ≥ W1(Pεµ,Pεν).

Lemma
Upper bound:

W1(µT ,TLd
Td ) ≤ inf

ε>0
C
√
εT +

∫
Td
|∇∆−1Pε(µT − T )|

and lower bound:

W1(µT ,TLd
Td )

≥ sup
M,ε>0

{
1
M

∫
Td
|∇∆−1Pε(µT − T )|2 − C

M3

∫
Td
|∇∆−1Pε(µT − T )|4

}
,

where C > 0 is a constant depending on d only.



Some Fourier Analysis

To conveniently bound the terms
∫
Td |∇∆−1Pε(µ− ν)|q we use Fourier

series. We use the isometry∫
Td
|f |2 =

∑
m∈Zd

|̂f (m)|2

as well as ∫
|f |4 =

∑
m1+m2+m3+m4=0

f̂ (m1)f̂ (m2)f̂ (m3)f̂ (m4).

We obtain ∫
Td
|∇∆−1Pε(µT − 1)|2 =

∑
m∈Zd\{0}

e−ε|m|
2 |µ̂(m)|2

|m|2 .

and ∫
Td
|∇∆−1Pε(µ− 1)|4 =

∑
m1+m2+m3+m4=0

mi 6=0

4∏
i=1

mi

|mi |2
e−ε |mi |2 µ̂(mi )



Moment bounds

So far everything was valid for a general path in Td . Probability enters when
we take expectations. We have

|µ̂T (m)|2 =

∫ T

0

∫ T

0
exp (2πim(Bs2 − Bs1 )) ds1ds2

and

µ̂T (m1)µ̂T (m2)µ̂T (m3)µ̂T (m4) =

=

∫ T

0

∫ T

0

∫ T

0

∫ T

0
exp

2πi
4∑

j=1

mjBsj

 ds1ds2ds3ds4

Exchanging expectations and integrals we find explicit formulas, e.g., for the
second moment

E [exp (2πim(Bs2 − Bs1 ))] = exp
(
−2π2|m|2|s2 − s1|2H

)
.



Upper bound

We find

E
[
|µ̂T (m)|2

]
=

∫ T

0

∫ T

0
exp

(
−2π2|m|2|s2 − s1|2H

)
ds1ds2 ∼

T

|m| 1
H
.

Thus

E
[∫

Td
|∇∆−1Pε(µT − 1)|2

]
.

∑
m∈Zd\{0}

e−ε|m|
2 T
|m|2+1/H

. T ·


for d < 1

H + 2
| log(ε)| for d = 1

H + 2
1/
√
ε

d−2−1/H for d > 1
H + 2.

Taking expectation in the upper bound

E
[
W1(µT ,TLd

Td )
]
≤ inf
ε>0

C
√
εT + E

[∫
Td
|∇∆−1Pε(µT − T )|2

]1/2

We conclude choosing

√
ε =


0 for d < 1

H + 2
T−1/2 for d = 1

H + 2

T−
1

2−1/H for d > 1
H + 2.



Lower bound

Taking expectation in the lower bound we have

E
[
W1(µT ,TLd

Td )
]

≥ sup
M,ε>0

{
1
M

E
[∫

Td
|∇∆−1Pε(µT − T )|2

]
− C

M3 E
[∫

Td
|∇∆−1Pε(µT − T )|4

]}
,

Assume that for some constant C > 0, we have a reverse Hölder inequality

E
[∫

Td
|∇∆−1Pε(µT − T )|4

]
≤ CE

[∫
Td
|∇∆−1Pε(µT − T )|2

]2

then choosing

M = KE
[∫

Td
|∇∆−1Pε(µT − T )|2

]1/2

for some constant K > 0 (large but fixed) we have

E
[
W1(µT ,TLd

Td )
]
≥ E

[∫
Td
|∇∆−1Pε(µT − T )|2

]1/2( 1
K
− C

K 3

)
.

We conclude e.g. if ε = ε(T ) is chosen as in the upper bound.



Fourth moment estimates

To prove

E
[∫

Td
|∇∆−1Pε(µT − T )|4

]
≤ CE

[∫
Td
|∇∆−1Pε(µT − T )|2

]2

we use lower bounds on the spectrum of the 3× 3 covariance matrix for
increments of fBM.
Cases:

1 H = 1/2: the matrix is diagonal

2 H < 1/2: diagonally dominant

3 H > 1/2: we use represent fBM as stochastic integral. Bounds look like

E

[
4∏

i=1

µ̂T (mi )

]
. T

∑
{i,j,k}⊆{1,2,3,4}

(|mi ||mi + mj ||mi + mj + mk |)−1/H

and then we use Young convolution inequality to bound the resulting series.
Is there a simpler proof?

Also F.Y. Wang needs to estimate higher order moments: his proof uses
Markov property and heat kernel estimates (still very demanding).



A possible strategy via Itô trick

For H = 1/2 (and assuming stationarity) we can use the Itô trick to estimate

E

[∣∣∣∣∫ T

0
∇∆−1Pε(δ0 − 1)(Bs)

∣∣∣∣p
]

Write Itô formula

f (BT )− f (B0)−
∫ T

0
∇f (Bs)dBs =

1
2

∫ T

0
∆f (Bs)ds.

Set g = ∆f (g must have zero integral on Td ) so that∫
g dµT = 2

(
∆−1g(BT )−∆−1g(B0)−

∫ T

0
∇∆−1g(Bs)dBs

)
.

Take p = 2k , use BDG inequality

E
[∣∣∣∣∫ g dµT

∣∣∣∣p] . E
[
|∆−1g(B0)|p

]
+ E

[∣∣∣∣∫ T

0

∣∣∣∇∆−1g
∣∣∣2 (Bs)ds

∣∣∣∣p/2
]
,

and iterate (but each time subtract the spatial average). For p = 2 it gives

E

[∣∣∣∣∫ g dµT

∣∣∣∣2
]
. E

[
|∆−1g(B0)|2

]
+ TE

[∣∣∣∇∆−1g
∣∣∣2 (B0)

]
.



Conclusion

1 We proved upper and lower bounds for the W1 distance between a
fractional Brownian path and the uniform measure (on Td ).
A transition between different rates occurs at

d = 2 +
1
H
.

2 Many open problems, e.g., existence of limits (possibly for W2 instead)

3 Connections with regularization by noise or covering times should be
better investigated.


